935 resultados para Two-dimensional numerical simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particulate solids are complex redundant systems which consist of discrete particles. The interactions between the particles are complex and have been the subject of many theoretical and experimental investigations. Invetigations of particulate material have been restricted by the lack of quantitative information on the mechanisms occurring within an assembly. Laboratory experimentation is limited as information on the internal behaviour can only be inferred from measurements on the assembly boundary, or the use of intrusive measuring devices. In addition comparisons between test data are uncertain due to the difficulty in reproducing exact replicas of physical systems. Nevertheless, theoretical and technological advances require more detailed material information. However, numerical simulation affords access to information on every particle and hence the micro-mechanical behaviour within an assembly, and can replicate desired systems. To use a computer program to numerically simulate material behaviour accurately it is necessary to incorporte realistic interaction laws. This research programme used the finite difference simulation program `BALL', developed by Cundall (1971), which employed linear spring force-displacement laws. It was thus necessary to incorporate more realistic interaction laws. Therefore, this research programme was primarily concerned with the implementation of the normal force-displacement law of Hertz (1882) and the tangential force-displacement laws of Mindlin and Deresiewicz (1953). Within this thesis the contact mechanics theories employed in the program are developed and the adaptations which were necessary to incorporate these laws are detailed. Verification of the new contact force-displacement laws was achieved by simulating a quasi-static oblique contact and single particle oblique impact. Applications of the program to the simulation of large assemblies of particles is given, and the problems in undertaking quasi-static shear tests along with the results from two successful shear tests are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate an application of the method of fundamental solutions (MFS) to heat conduction in two-dimensional bodies, where the thermal diffusivity is piecewise constant. We extend the MFS proposed in Johansson and Lesnic [A method of fundamental solutions for transient heat conduction, Eng. Anal. Bound. Elem. 32 (2008), pp. 697–703] for one-dimensional heat conduction with the sources placed outside the space domain of interest, to the two-dimensional setting. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate results can be obtained efficiently with small computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate two numerical procedures for the Cauchy problem in linear elasticity, involving the relaxation of either the given boundary displacements (Dirichlet data) or the prescribed boundary tractions (Neumann data) on the over-specified boundary, in the alternating iterative algorithm of Kozlov et al. (1991). The two mixed direct (well-posed) problems associated with each iteration are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method, while the optimal value of the regularization parameter is chosen via the generalized cross-validation (GCV) criterion. An efficient regularizing stopping criterion which ceases the iterative procedure at the point where the accumulation of noise becomes dominant and the errors in predicting the exact solutions increase, is also presented. The MFS-based iterative algorithms with relaxation are tested for Cauchy problems for isotropic linear elastic materials in various geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An inverse turbulent cascade in a restricted two-dimensional periodic domain creates a condensate—a pair of coherent system-size vortices. We perform extensive numerical simulations of this system and carry out theoretical analysis based on momentum and energy exchanges between the turbulence and the vortices. We show that the vortices have a universal internal structure independent of the type of small-scale dissipation, small-scale forcing, and boundary conditions. The theory predicts not only the vortex inner region profile, but also the amplitude, which both perfectly agree with the numerical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use finite size scaling to study Ising spin glasses in two spatial dimensions. The issue of universality is addressed by comparing discrete and continuous probability distributions for the quenched random couplings. The sophisticated temperature dependency of the scaling fields is identified as the major obstacle that has impeded a complete analysis. Once temperature is relinquished in favor of the correlation length as the basic variable, we obtain a reliable estimation of the anomalous dimension and of the thermal critical exponent. Universality among binary and Gaussian couplings is confirmed to a high numerical accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper is a report on progress in the simulation of turbulent flames using the Cray T3D and T3E at the Edinburgh parallel computing centre, using codes developed in Cambridge. Two combustion DNS codes are described, ANGUS and SENGA, which solve incompressible and fully compressible reacting flows respectively. The technical background to combustion DNS is presented, and the resource requirements explained in terms of the physic and chemistry of the problem. Results for flame turbulence interaction studies are presented and discussed in terms of their relevance to modelling. Recent work on the fully compressible problem is highlighted and future directions outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes two new techniques designed to enhance the performance of fire field modelling software. The two techniques are "group solvers" and automated dynamic control of the solution process, both of which are currently under development within the SMARTFIRE Computational Fluid Dynamics environment. The "group solver" is a derivation of common solver techniques used to obtain numerical solutions to the algebraic equations associated with fire field modelling. The purpose of "group solvers" is to reduce the computational overheads associated with traditional numerical solvers typically used in fire field modelling applications. In an example, discussed in this paper, the group solver is shown to provide a 37% saving in computational time compared with a traditional solver. The second technique is the automated dynamic control of the solution process, which is achieved through the use of artificial intelligence techniques. This is designed to improve the convergence capabilities of the software while further decreasing the computational overheads. The technique automatically controls solver relaxation using an integrated production rule engine with a blackboard to monitor and implement the required control changes during solution processing. Initial results for a two-dimensional fire simulation are presented that demonstrate the potential for considerable savings in simulation run-times when compared with control sets from various sources. Furthermore, the results demonstrate the potential for enhanced solution reliability due to obtaining acceptable convergence within each time step, unlike some of the comparison simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we establish, from extensive numerical experiments, that the two dimensional stochastic fire-diffuse-fire model belongs to the directed percolation universality class. This model is an idealized model of intracellular calcium release that retains the both the discrete nature of calcium stores and the stochastic nature of release. It is formed from an array of noisy threshold elements that are coupled only by a diffusing signal. The model supports spontaneous release events that can merge to form spreading circular and spiral waves of activity. The critical level of noise required for the system to exhibit a non-equilibrium phase-transition between propagating and non-propagating waves is obtained by an examination of the \textit{local slope} $\delta(t)$ of the survival probability, $\Pi(t) \propto \exp(- \delta(t))$, for a wave to propagate for a time $t$.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider instabilities of localised solutions in planar neural field firing rate models of Wilson-Cowan or Amari type. Importantly we show that angular perturbations can destabilise spatially localised solutions. For a scalar model with Heaviside firing rate function we calculate symmetric one-bump and ring solutions explicitly and use an Evans function approach to predict the point of instability and the shapes of the dominant growing modes. Our predictions are shown to be in excellent agreement with direct numerical simulations. Moreover, beyond the instability our simulations demonstrate the emergence of multi-bump and labyrinthine patterns. With the addition of spike-frequency adaptation, numerical simulations of the resulting vector model show that it is possible for structures without rotational symmetry, and in particular multi-bumps, to undergo an instability to a rotating wave. We use a general argument, valid for smooth firing rate functions, to establish the conditions necessary to generate such a rotational instability. Numerical continuation of the rotating wave is used to quantify the emergent angular velocity as a bifurcation parameter is varied. Wave stability is found via the numerical evaluation of an associated eigenvalue problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the causal structure of the two-dimensional (2D) reduced background used in the perturbative treatment of a head-on collision of two D-dimensional Aichelburg–Sexl gravitational shock waves. After defining all causal boundaries, namely the future light-cone of the collision and the past light-cone of a future observer, we obtain characteristic coordinates using two independent methods. The first is a geometrical construction of the null rays which define the various light cones, using a parametric representation. The second is a transformation of the 2D reduced wave operator for the problem into a hyperbolic form. The characteristic coordinates are then compactified allowing us to represent all causal light rays in a conformal Carter–Penrose diagram. Our construction holds to all orders in perturbation theory. In particular, we can easily identify the singularities of the source functions and of the Green’s functions appearing in the perturbative expansion, at each order, which is crucial for a successful numerical evaluation of any higher order corrections using this method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a eduction to a cubic nonlinear Schr{\"o}dinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher-order analysis yielding a generalised NLS, which includes known stabilising terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, symptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximised for stationary breathers, and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt \& Wattis, {\em J Phys A}, {\bf 39}, 4955, (2006)), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalised NLS equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using asymptotic methods, we investigate whether discrete breathers are supported by a two-dimensional Fermi-Pasta-Ulam lattice. A scalar (one-component) two-dimensional Fermi-Pasta-Ulam lattice is shown to model the charge stored within an electrical transmission lattice. A third-order multiple-scale analysis in the semi-discrete limit fails, since at this order, the lattice equations reduce to the (2+1)-dimensional cubic nonlinear Schrödinger (NLS) equation which does not support stable soliton solutions for the breather envelope. We therefore extend the analysis to higher order and find a generalised $(2+1)$-dimensional NLS equation which incorporates higher order dispersive and nonlinear terms as perturbations. We find an ellipticity criterion for the wave numbers of the carrier wave. Numerical simulations suggest that both stationary and moving breathers are supported by the system. Calculations of the energy show the expected threshold behaviour whereby the energy of breathers does {\em not} go to zero with the amplitude; we find that the energy threshold is maximised by stationary breathers, and becomes arbitrarily small as the boundary of the domain of ellipticity is approached.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatigue damage in the connections of single mast arm signal support structures is one of the primary safety concerns because collapse could result from fatigue induced cracking. This type of cantilever signal support structures typically has very light damping and excessively large wind-induced vibration have been observed. Major changes related to fatigue design were made in the 2001 AASHTO LRFD Specification for Structural Supports for Highway Signs, Luminaries, and Traffic Signals and supplemental damping devices have been shown to be promising in reducing the vibration response and thus fatigue load demand on mast arm signal support structures. The primary objective of this study is to investigate the effectiveness and optimal use of one type of damping devices termed tuned mass damper (TMD) in vibration response mitigation. Three prototype single mast arm signal support structures with 50-ft, 60-ft, and 70-ft respectively are selected for this numerical simulation study. In order to validate the finite element models for subsequent simulation study, analytical modeling of static deflection response of mast arm of the signal support structures was performed and found to be close to the numerical simulation results from beam element based finite element model. A 3-DOF dynamic model was then built using analytically derived stiffness matrix for modal analysis and time history analysis. The free vibration response and forced (harmonic) vibration response of the mast arm structures from the finite element model are observed to be in good agreement with the finite element analysis results. Furthermore, experimental test result from recent free vibration test of a full-scale 50-ft mast arm specimen in the lab is used to verify the prototype structure’s fundamental frequency and viscous damping ratio. After validating the finite element models, a series of parametric study were conducted to examine the trend and determine optimal use of tuned mass damper on the prototype single mast arm signal support structures by varying the following parameters: mass, frequency, viscous damping ratio, and location of TMD. The numerical simulation study results reveal that two parameters that influence most the vibration mitigation effectiveness of TMD on the single mast arm signal pole structures are the TMD frequency and its viscous damping ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fast and accurate numerical technique is developed for solving the biharmonic equation in a multiply connected domain, in two dimensions. We apply the technique to the computation of slow viscous flow (Stokes flow) driven by multiple stirring rods. Previously, the technique has been restricted to stirring rods of circular cross section; we show here how the prior method fails for noncircular rods and how it may be adapted to accommodate general rod cross sections, provided only that for each there exists a conformal mapping to a circle. Corresponding simulations of the flow are described, and their stirring properties and energy requirements are discussed briefly. In particular the method allows an accurate calculation of the flow when flat paddles are used to stir a fluid chaotically.