902 resultados para Two-Phase Flow In Porous Media


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the field of study related to the stability analysis of fluid saturated porous media is investigated. In particular the contribution of the viscous heating to the onset of convective instability in the flow through ducts is analysed. In order to evaluate the contribution of the viscous dissipation, different geometries, different models describing the balance equations and different boundary conditions are used. Moreover, the local thermal non-equilibrium model is used to study the evolution of the temperature differences between the fluid and the solid matrix in a thermal boundary layer problem. On studying the onset of instability, different techniques for eigenvalue problems has been used. Analytical solutions, asymptotic analyses and numerical solutions by means of original and commercial codes are carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlorinated Aliphatic Hydrocarbons (CAHs) are widespread wastewater and groundwater contaminants and represent a real danger for human health and environment. This research is related to the biodegradation technologies to treat chlorinated hydrocarbons. In particular the study of this thesis is focused on chloroform cometabolism by a butane-grown aerobic pure culture (Rhodococcus aetherovorans BCP1) in continuous-flow biofilm reactors, which are used for in-situ and on-site treatments. The work was divided in two parts: in the first one an experimental study has been conducted in two packed-bed reactors (PBRs) for a period of 370 days; in the second one a fluid dynamics and kinetic model has been developed in order to simulate the experimental data concerning a previous study made in a 2-m continuous-flow sand-filled reactor. The goals of the first study were to obtain preliminary information on the feasibility of chloroform biodegradation by BCP1 under attached-cell conditions and to evaluate the applicability of the pulsed injection of growth substrate and oxygen to biofilm reactors. The pulsed feeding represents a tool to control the clogging and to ensure a long bioreactive zone. The operational conditions implemented in the PBRs allowed the attainment of a 4-fold increase of the ratio of chloroform degraded to substrate consumed, in comparison with the phase of continuous substrate supply. The second study was aimed at identifying guidelines for optimizing the oxygen/substrate supply schedule, developing a reliable model of chloroform cometabolism in porous media. The tested model led to a suitable interpretation of the experimental data as long as the ratio of CF degraded to butane consumed was ≤ 0.27 mgchloroform /mgbutane. A long-term simulation of the best-performing schedule of pulsed oxygen/substrate supply indicated the attainment of a steady state condition characterized by unsatisfactory bioremediation performances, evidencing the need for a further optimization of the pulsed injection technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental setup was designed to visualize water percolation inside the porous transport layer, PTL, of proton exchange membrane, PEM, fuel cells and identify the relevant characterization parameters. In parallel with the observation of the water movement, the injection pressure (pressure required to transport water through the PTL) was measured. A new scaling for the drainage in porous media has been proposed based on the ratio between the input and the dissipated energies during percolation. A proportional dependency was obtained between the energy ratio and a non-dimensional time and this relationship is not dependent on the flow regime; stable displacement or capillary fingering. Experimental results show that for different PTL samples (from different manufacturers) the proportionality is different. The identification of this proportionality allows a unique characterization of PTLs with respect to water transport. This scaling has relevance in porous media flows ranging far beyond fuel cells. In parallel with the experimental analysis, a two-dimensional numerical model was developed in order to simulate the phenomena observed in the experiments. The stochastic nature of the pore size distribution, the role of the PTL wettability and morphology properties on the water transport were analyzed. The effect of a second porous layer placed between the porous transport layer and the catalyst layer called microporous layer, MPL, was also studied. It was found that the presence of the MPL significantly reduced the water content on the PTL by enhancing fingering formation. Moreover, the presence of small defects (cracks) within the MPL was shown to enhance water management. Finally, a corroboration of the numerical simulation was carried out. A threedimensional version of the network model was developed mimicking the experimental conditions. The morphology and wettability of the PTL are tuned to the experiment data by using the new energy scaling of drainage in porous media. Once the fit between numerical and experimental data is obtained, the computational PTL structure can be used in different types of simulations where the conditions are representative of the fuel cell operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water management in the porous media of proton exchange membrane (PEM) fuel cells, catalyst layer and porous transport layers (PTL) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. The data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited to porosimetry. A new method and apparatus for measuring the percolation pressure in the catalyst layer has been developed. The experimental setup is similar to a Hele-Shaw experiment where samples are compressed and a fluid is injected into the sample. Pressure-Wetted Volume plots as well as Permeability plots for the catalyst layers were generated from the percolation testing. PTL samples were also characterizes using a Hele-Shaw method. Characterization for the PTLs was completed for the three states: new, conditioned and aged. This is represented in a Ce-t* plots, which show a large offset between new and aged samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geological and pedological processes rarely form isotropic media as is usually assumed in transport studies. Anisotropy at the Darcy or field scale may be detected directly by measuring flow parameters or may become indirectly evident from movement and shape of solute plumes. Anisotropic behavior of a soil at one scale may, in many cases, be related to the presence of lower-scale directional structures. Miller similitude with different pore-scale geometries of the basic element is used to model macroscopic flow and transport behavior. Analytical expressions for the anisotropic conductivity tensor are derived based on the dynamic law that governs the flow problem at the pore scale. The effects of anisotropy on transport parameters are estimated by numerical modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contaminated soil reuse was investigated, with higher profusion, throughout the early 90’s, coinciding with the 1991 Gulf War, when efforts to amend large crude oil releases began in geotechnical assessment of contaminated soils. Isolated works referring to geotechnical testing with hydrocarbon ground contaminants are described in the state-of-the-art, which have been extended to other type of contaminated soil references. Contaminated soils by light non-aquous phase liquids (LNAPL) bearing capacity reduction has been previously investigated from a forensic point of view. To date, all the research works have been published based on the assumption of constant contaminant saturation for the entire soil mass. In contrast, the actual LNAPLs distribution plumes exhibit complex flow patterns which are subject to physical and chemical changes with time and distance travelled from the release source. This aspect has been considered along the present text. A typical Madrid arkosic soil formation is commonly known as Miga sand. Geotechnical tests have been carried out, with Miga sand specimens, in incremental series of LNAPL concentrations in order to observe the soil engineering properties variation due to a contamination increase. Results are discussed in relation with previous studies and as a matter of fact, soil mechanics parameters change in the presence of LNAPL, showing different tendencies according to each test and depending on the LNAPL content, as well as to the specimen’s initially planned relative density, dense or loose. Geotechnical practical implications are also commented on and analyzed. Variation on geotechnical properties may occur only within the external contour of contamination distribution plume. This scope has motivated the author to develop a physical model based on transparent soil technology. The model aims to reproduce the distribution of LNAPL into the ground due to an accidental release from a storage facility. Preliminary results indicate that the model is a potentially complementary tool for hydrogeological applications, site-characterization and remediation treatment testing within the framework of soil pollution events. A description of the test setup of an innovative three dimensional physical model for the flow of two or more phases, in porous media, is presented herein, along with a summary of the advantages, limitations and future applications for modeling with transparent material. En los primeros años de la década de los años 90, del siglo pasado, coincidiendo con la Guerra del Golfo en 1991, se investigó intensamente sobre la reutilización de suelos afectados por grandes volúmenes de vertidos de crudo, fomentándose la evaluación geotécnica de los suelos contaminados. Se describen, en el estado del arte de esta tésis, una serie de trabajos aislados en relación con la caracterización geotécnica de suelos contaminados con hidrocarburos, descripción ampliada mediante referencias relacionadas con otros tipos de contaminación de suelos. Existen estudios previos de patología de cimentaciones que analizan la reducción de la capacidad portante de suelos contaminados por hidrocarburos líquidos ligeros en fase no acuosa (acrónimo en inglés: LNAPL de “Liquid Non-Aquous Phase Liquid”). A fecha de redacción de la tesis, todas las publicaciones anteriores estaban basadas en la consideración de una saturación del contaminante constante en toda la extensión del terreno de cimentación. La distribución real de las plumas de contaminante muestra, por el contrario, complejas trayectorias de flujo que están sujetas a cambios físico-químicos en función del tiempo y la distancia recorrida desde su origen de vertido. Éste aspecto ha sido considerado y tratado en el presente texto. La arena de Miga es una formación geológica típica de Madrid. En el ámbito de esta tesis se han desarrollado ensayos geotécnicos con series de muestras de arena de Miga contaminadas con distintas concentraciones de LNAPL con el objeto de estimar la variación de sus propiedades geotécnicas debido a un incremento de contaminación. Se ha realizado una evaluación de resultados de los ensayos en comparación con otros estudios previamente analizados, resultando que las propiedades mecánicas del suelo, efectivamente, varían en función del contenido de LNAPL y de la densidad relativa con la que se prepare la muestra, densa o floja. Se analizan y comentan las implicaciones de carácter práctico que supone la mencionada variación de propiedades geotécnicas. El autor ha desarrollado un modelo físico basado en la tecnología de suelos transparentes, considerando que las variaciones de propiedades geotécnicas únicamente deben producirse en el ámbito interior del contorno de la pluma contaminante. El objeto del modelo es el de reproducir la distribución de un LNAPL en un terreno dado, causada por el vertido accidental de una instalación de almecenamiento de combustible. Los resultados preliminares indican que el modelo podría emplearse como una herramienta complementaria para el estudio de eventos contaminantes, permitiendo el desarrollo de aplicaciones de carácter hidrogeológico, caracterización de suelos contaminados y experimentación de tratamientos de remediación. Como aportación de carácter innovadora, se presenta y describe un modelo físico tridimensional de flujo de dos o más fases a través de un medio poroso transparente, analizándose sus ventajas e inconvenientes así como sus limitaciones y futuras aplicaciones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes recent advances made in computational modelling of the sugar cane liquid extraction process. The saturated fibro-porous material is rolled between circumferentially grooved rolls, which enhance frictional grip and provide a low-resistance path for liquid flow during the extraction process. Previously reported two-dimensional (2D) computational models, account for the large deformation of the porous material by solving the fully coupled governing fibre stress and fluid-flow equations using finite element techniques. While the 2D simulations provide much insight into the overarching cause-effect relationships, predictions of mechanical quantities such as roll separating force and particularly torque as a function of roll speed and degree of compression are not satisfactory for industrial use. It is considered that the unsatisfactory response in roll torque prediction may be due to the stress levels that exist between the groove tips and roots which have been largely neglected in the geometrically simplified 2D model. This paper gives results for both two- and three-dimensional finite element models and highlights their strengths and weaknesses in predicting key milling parameters. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linear stability of flow past two circular cylinders in a side-by-side arrangement is investigated theoretically, numerically and experimentally under the assumption of a two-dimensional flow field, in order to explore the origin of in-phase and antiphase oscillatory flows. Steady symmetric flow is realized at a small Reynolds number, but becomes unstable above a critical Reynolds number though the solution corresponding to the flow still satisfies the basic equations irrespective of the magnitude of the Reynolds number. We obtained the solution numerically and investigated its linear stability. We found that there are two kinds of unstable modes, i.e., antisymmetric and symmetric modes, which lead to in-phase and antiphase oscillatory flows, respectively. We determined the critical Reynolds numbers for the two modes and evaluated the critical distance at which the most unstable disturbance changes from the antisymmetric to the symmetric mode, or vice versa. ©2005 The Physical Society of Japan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this work is to develop a quasi three-dimensional numerical model to simulate stony debris flows, considering a continuum fluid phase, composed by water and fine sediments, and a non-continuum phase including large particles, such as pebbles and boulders. Large particles are treated in a Lagrangian frame of reference using the Discrete Element Method, the fluid phase is based on the Eulerian approach, using the Finite Element Method to solve the depth-averaged Navier-Stokes equations in two horizontal dimensions. The particle’s equations of motion are in three dimensions. The model simulates particle-particle collisions and wall-particle collisions, taking into account that particles are immersed in a fluid. Bingham and Cross rheological models are used for the continuum phase. Both formulations provide very stable results, even in the range of very low shear rates. Bingham formulation is better able to simulate the stopping stage of the fluid when applied shear stresses are low. Results of numerical simulations have been compared with data from laboratory experiments on a flume-fan prototype. Results show that the model is capable of simulating the motion of big particles moving in the fluid flow, handling dense particulate flows and avoiding overlap among particles. An application to simulate debris flow events that occurred in Northern Venezuela in 1999 shows that the model could replicate the main boulder accumulation areas that were surveyed by the USGS. Uniqueness of this research is the integration of mud flow and stony debris movement in a single modeling tool that can be used for planning and management of debris flow prone areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this work is to develop a quasi three-dimensional numerical model to simulate stony debris flows, considering a continuum fluid phase, composed by water and fine sediments, and a non-continuum phase including large particles, such as pebbles and boulders. Large particles are treated in a Lagrangian frame of reference using the Discrete Element Method, the fluid phase is based on the Eulerian approach, using the Finite Element Method to solve the depth-averaged Navier–Stokes equations in two horizontal dimensions. The particle’s equations of motion are in three dimensions. The model simulates particle-particle collisions and wall-particle collisions, taking into account that particles are immersed in a fluid. Bingham and Cross rheological models are used for the continuum phase. Both formulations provide very stable results, even in the range of very low shear rates. Bingham formulation is better able to simulate the stopping stage of the fluid when applied shear stresses are low. Results of numerical simulations have been compared with data from laboratory experiments on a flume-fan prototype. Results show that the model is capable of simulating the motion of big particles moving in the fluid flow, handling dense particulate flows and avoiding overlap among particles. An application to simulate debris flow events that occurred in Northern Venezuela in 1999 shows that the model could replicate the main boulder accumulation areas that were surveyed by the USGS. Uniqueness of this research is the integration of mud flow and stony debris movement in a single modeling tool that can be used for planning and management of debris flow prone areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many geological formations consist of crystalline rocks that have very low matrix permeability but allow flow through an interconnected network of fractures. Understanding the flow of groundwater through such rocks is important in considering disposal of radioactive waste in underground repositories. A specific area of interest is the conditioning of fracture transmissivities on measured values of pressure in these formations. This is the process where the values of fracture transmissivities in a model are adjusted to obtain a good fit of the calculated pressures to measured pressure values. While there are existing methods to condition transmissivity fields on transmissivity, pressure and flow measurements for a continuous porous medium there is little literature on conditioning fracture networks. Conditioning fracture transmissivities on pressure or flow values is a complex problem because the measurements are not linearly related to the fracture transmissivities and they are also dependent on all the fracture transmissivities in the network. We present a new method for conditioning fracture transmissivities on measured pressure values based on the calculation of certain basis vectors; each basis vector represents the change to the log transmissivity of the fractures in the network that results in a unit increase in the pressure at one measurement point whilst keeping the pressure at the remaining measurement points constant. The fracture transmissivities are updated by adding a linear combination of basis vectors and coefficients, where the coefficients are obtained by minimizing an error function. A mathematical summary of the method is given. This algorithm is implemented in the existing finite element code ConnectFlow developed and marketed by Serco Technical Services, which models groundwater flow in a fracture network. Results of the conditioning are shown for a number of simple test problems as well as for a realistic large scale test case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possible states in the flow around two identical circular cylinders in tandem arrangements are investigated for configurations in the vicinity of the drag inversion separation. By means of numerical simulations, the hysteresis in the transition between the shedding regimes is studied and the relationship between (three-dimensional) secondary instabilities and shedding regime determination is addressed. The differences observed in the behavior of two- and three-dimensional flows are analyzed, and the regions of bistable flow are delimited. Very good agreement is found between the proposed scenario and results available in the literature. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3420111]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theory of nonlinear diffraction of intensive light beams propagating through photorefractive media is developed. Diffraction occurs on a reflecting wire embedded in the nonlinear medium at a relatively small angle with respect to the direction of the beam propagation. It is shown that this process is analogous to the generation of waves by a flow of a superfluid past an obstacle. The ""equation of state"" of such a superfluid is determined by the nonlinear properties of the medium. On the basis of this hydrodynamic analogy, the notion of the ""Mach number"" is introduced where the transverse component of the wave vector plays the role of the fluid velocity. It is found that the Mach cone separates two regions of the diffraction pattern: inside the Mach cone oblique dark solitons are generated and outside the Mach cone the region of ""optical ship waves"" (the wave pattern formed by a two-dimensional packet of linear waves) is situated. Analytical theory of the ""optical ship waves"" is developed and two-dimensional dark soliton solutions of the generalized two-dimensional nonlinear Schrodinger equation describing the light beam propagation are found. Stability of dark solitons with respect to their decay into vortices is studied and it is shown that they are stable for large enough values of the Mach number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid-liquid microextraction without phase segmentation was implemented in a multicommuted flow system for determination of the anti-hypertensive diltiazem. The procedure was based on ion pair formation between the drug and the dye bromothymol blue at pH 3.5. The detection was performed without phase separation in a glass tube coupled to a fiber-optics spectrophotometer. The total volume of chloroform was reduced to 50 mu L in comparison with 10 mL consumed in batch. A linear response was observed between 9 and 120 mu mol L(-1), with a detection limit of 0.9 mu mol L(-1) (99.7% confidence level). The coefficient of variation (n = 10), sampling rate and extraction efficiency were estimated as 0.6%, 78 determinations per hour and 61%, respectively. About 30 mu g of bromothymol blue was consumed and the waste volume was 380 mu L per determination. The results for pharmaceutical samples agreed with those obtained by the reference procedure at the 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, quasi-diabatic two-phase flow pattern visualizations and measurements of elongated bubble velocity, frequency and length were performed. The tests were run for R134a and R245fa evaporating in a stainless steel tube with diameter of 2.32 mm, mass velocities ranging from 50 to 600 kg/m(2) s and saturation temperatures of 22 degrees C, 31 degrees C and 41 degrees C. The tube was heated by applying a direct DC current to its surface. Images from a high-speed video-camera (8000 frames/s) obtained through a transparent tube just downstream the heated sections were used to identify the following flow patterns: bubbly, elongated bubbles, churn and annular flows. The visualized flow patterns were compared against the predictions provided by Barnea et al. (1983) [1], Felcar et al. (2007) [10], Revellin and Thome (2007) [3] and Ong and Thome (2009) [11]. From this comparison, it was found that the methods proposed by Felcar et al. (2007) [10] and Ong and Thome (2009) [1] predicted relatively well the present database. Additionally, elongated bubble velocities, frequencies and lengths were determined based on the analysis of high-speed videos. Results suggested that the elongated bubble velocity depends on mass velocity, vapor quality and saturation temperature. The bubble velocity increases with increasing mass velocity and vapor quality and decreases with increasing saturation temperature. Additionally, bubble velocity was correlated as linear functions of the two-phase superficial velocity. (C) 2010 Elsevier Inc. All rights reserved.