958 resultados para Tumour necrosis
Resumo:
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.
Resumo:
Severe dengue pathogenesis is not fully understood, but high levels of proinflammatory cytokines have been associated with dengue disease severity. In this study, the cytokine levels in 171 sera from Mexican patients with primary dengue fever (DF) and dengue haemorrhagic fever (DHF) from dengue virus (DENV) 1 (n = 116) or 2 (n = 55) were compared. DF and DHF were defined according to the patient’s clinical condition, the primary infections as indicated by IgG enzymatic immunoassay negative results, and the infecting serotype as assessed by real-time reverse transcription-polymerase chain reaction. Samples were analysed for circulating levels of interleukin (IL)-12p70, interferon (IFN)-γ, tumour necrosis factor (TNF)-α, IL-6, and IL-8 using a commercial cytometric bead array. Significantly higher IFN-γ levels were found in patients with DHF than those with DF. However, significantly higher IL-12p70, TNF-α, and IL-6 levels were associated with DHF only in patients who were infected with DENV2 but not with DENV1. Moreover, patients with DF who were infected with DENV1 showed higher levels of IL-12p70, TNF-α, and IL-6 than patients with DHF early after-fever onset. The IL-8 levels were similar in all cases regardless of the clinical condition or infection serotype. These results suggest that the association between high proinflammatory cytokine levels and dengue disease severity does not always stand, and it once again highlights the complex nature of DHF pathogenesis.
Resumo:
Inflammation is a protective attempt by the host to remove injurious stimuli and initiate the tissue healing process. The inflammatory response must be actively terminated, however, because failure to do so can result in 'bystander' damage to tissues and diseases such as arthritis or type-2 diabetes. Yet the mechanisms controlling excessive inflammatory responses are still poorly understood. Here we show that mouse effector and memory CD4(+) T cells abolish macrophage inflammasome-mediated caspase-1 activation and subsequent interleukin 1beta release in a cognate manner. Inflammasome inhibition is observed for all tested NLRP1 (commonly called NALP1) and NLRP3 (NALP3 or cryopyrin) activators, whereas NLRC4 (IPAF) inflammasome function and release of other inflammatory mediators such as CXCL2, interleukin 6 and tumour necrosis factor are not affected. Suppression of the NLRP3 inflammasome requires cell-to-cell contact and can be mimicked by macrophage stimulation with selected ligands of the tumour necrosis factor family, such as CD40L (also known as CD40LG). In a NLRP3-dependent peritonitis model, effector CD4(+) T cells are responsible for decreasing neutrophil recruitment in an antigen-dependent manner. Our findings reveal an unexpected mechanism of inflammasome inhibition, whereby effector and memory T cells suppress potentially damaging inflammation, yet leave the primary inflammatory response, crucial for the onset of immunity, intact.
Resumo:
Ligands of the TNF (tumour necrosis factor) superfamily have pivotal roles in the organization and function of the immune system, and are implicated in the aetiology of several acquired and genetic diseases. TNF ligands share a common structural motif, the TNF homology domain (THD), which binds to cysteine-rich domains (CRDs) of TNF receptors. CRDs are composed of structural modules, whose variation in number and type confers heterogeneity upon the family. Protein folds reminiscent of the THD and CRD are also found in other protein families, raising the possibility that the mode of interaction between TNF and TNF receptors might be conserved in other contexts.
Resumo:
Summary Resolution of the inflammation is as important as its induction. In this thesis, we investigated the contributions of two prominent factors involved in inflammation, Tumour Necrosis Factor (TNF) and neutrophils. We studied their role in the resolution óf the inflammatory lesion induced by the infection with the protozoan parasite Leishmania major. In mice susceptible to infection with L. major, unhealing lesions are characterized by an elevated number and sustained presence of inflammatory neutrophils in the infected tissue, illustrating an acute inflammatory process. In contrast, mice from resistant strains, which resolve their lesions, can control the presence of neutrophils at the site of infection. Neutrophil persistence in the infected tissue may result from several events including an increased survival of neutrophils mediated by factors produced by the pathogen or the microenvironment. Following infection with L. major, the cellular composition of the inflammatory lesion differs significantly between susceptible and resistant mice and a higher proportion of macrophages is present in the lesions of resistant strains. In an attempt to clarify the factors involved in neutrophil persistence, we investigated the mechanisms modulating neutrophil cell death. We demonstrated that macrophages could induce neutrophil apoptosis in a process involving TNF. TNF is an essential cytokine with pro- and anti-inflammatory properties, which is expressed as a transmembrane protein that can be cleaved releasing the secreted form. Our data show the essential role of the transmembrane form of TNF (mTNF) in the induction of neutrophil apoptosis by macrophages, revealing macrophages and mTNF as important regulators of neutrophil apoptosis. TNF is critical in the resolution of the inflammatory lesion induced by L. major infection, and in L. major resistant strains its absence results in increased swelling of the lesions. We investigated the contribution of mTNF in the outcome of L. major infection. Our data demonstrate that following infection with L. major, mTNF is sufficient to support the resolution of the inflammatory lesion and optimal parasite killing. In addition, we show that the presence of mTNF is essential to induce neutrophil clearance in the infected tissue. While the persistence of neutrophils is deleterious for the host, we could demonstrate an early anti-inflammatory role of neutrophils. Altogether, this study demonstrates the importance of mTNF in the induction of neutrophil apoptosis, a process involved in the resolution of the inflammatory lesion induced by L. major infection. Résumé La résolution de l'inflammation est toute aussi importante que son initiation. Durant ce travail de thèse, nous avons étudié les contributions de deux facteurs importants impliqués dans l'inflammation, le TNF (Facteur Nécrosant des Tumeurs) et les neutrophiles, dans la résolution de la lésion inflammatoire induite par l'infection avec le parasite protozoaire Leishmania major. Chez les souris sensibles à l'infection avec L. major, des lésions importantes qui ne guérissent pas se développent ; celles-ci sont caractérisées par un nombre élevé et une présence soutenue de neutrophiles dans les tissus infectés, ce qui illustre un processus inflammatoire aigu. Au contraire, les souris résistantes à l'infection qui guérissent leurs lésions, sont capables de contrôler la présence des neutrophiles au site d'infection. La persistance des neutrophiles dans la lésion inflammatoire peut être la conséquence de plusieurs événements, dont une augmentation de la survie des neutrophiles induite par des facteurs produits par le pathogène ou le micro-environnement. Suite à l'infection avec L. major, la composition cellulaire de la lésion inflammatoire est significativement différente entre les souris sensibles et résistantes à l'infection, et une plus grande proportion de macrophages est présente dans les lésions des souris résistantes. Dans l'objectif de clarifier les facteurs impliqués dans la persistance des neutrophiles dans les tissus infectés par L. major, nous avons étudié les mécanismes de régulation de la mort des neutrophiles. Nous avons démontré que les macrophages pouvaient induire l'apoptose des neutrophiles dans un procédé impliquant le TNF. Le TNF est une cytokine aux propriétés pro- et anti-inflammatoires, exprimée sous une forme transmembranaire qui peut être clivée pour relâcher la forme sécrétée. Nos expériences illustrent le rôle essentiel de la forme transmembranaire du TNF (mTNF) dans l'induction de l'apoptose des neutrophiles par les macrophages. Lé TNF est une cytokine importante dans la résolution de la réaction inflammatoire induite par L. major, et chez les souris résistantes l'absence de TNF provoque des lésions inflammatoires plus importantes. Nous avons étudié la contribution du mTNF dans la résolution de l'infection avec L. major. Nos résultats démontrent que suite à une infection avec le parasite, la présence du mTNF est suffisante pour guérir la lésion inflammatoire et contrôler efficacement la réplication du parasite. De plus, le mTNF joue un rôle essentiel dans l'élimination des neutrophiles du tissu infecté. Alors que la persistance des neutrophiles est nocive pour l'hôte, nous avons montré que les neutrophiles avaient un rôle précoce anti-inflammatoire. En résumé, cette étude révèle l'importance du mTNF dans l'induction de l'apoptose des neutrophiles par les macrophages, un procédé impliqué dans la résolution de la lésion inflammatoire induite par l'infection avec L. major.
Resumo:
Suite à une infection avec le protozoaire Leishmania major (L. major), les souris sensibles de souche BALB/c développent des lésions progressives associées à une maturation des cellules CD4+ TH2 sécrétant de l'IL-4. A l'inverse, les souris résistantes de souche C57BL/6 guérissent à terme, sous l'influence de l'expansion des cellules CD4+ TH1 produisant de l'IFNy qui a un effet synergique avec le TNF ("tumor necrosis factor") sur l'activation des macrophages et leur fonction leishmanicide. Lors de notre étude nous avons montré que des souris C57BL/6 doublement déficientes en TNF et FasL ("Fas ligand") infectées par L. major ne guérissaient ni leur lésions ni ne contrôlaient la réplication de parasites malgré une réponse de type TH1. Bien que l'activité de synthétase inductible de l'oxyde nitrique ("iNOs") soit comparable chez les souris doublement ou simplement déficientes, seules celles déficientes en FasL ont démontré une incapacité à contrôler la réplication parasitaire. De surcroît il est apparu que le FasL a un effet synergique avec l'IFNy. L'adjonction de FasL à une culture cellulaire de macrophages stimulés par l'IFNy conduit à une activation de ces cellules. Celle-ci est démontrée par l'augmentation de la production de TNF et de NO par les macrophages ainsi que par l'élimination des parasites intracellulaires par ces mêmes cellules. Alors que le FasL et l'IFNy semblent essentiels au contrôle de la réplication des pathogènes intracellulaires, la contribution de TNF s'oriente davantage vers le contrôle de l'inflammation. L'activation macrophagique via Fas précède la mort cellulaire qui survient quelques jours plus tard. Cette mort cellulaire programmée était indépendante de la cascade enzymatique des caspases, au vu de l'absence d'effet de l'inhibiteur non-spécifique ZVAD-fmk des caspases. Ces résultats suggèrent que l'interaction Fas-FasL agit comme une costimulation nécessaire à une activation efficace des macrophages, la mort cellulaire survenant consécutivement à l'activation des macrophages.¦-¦Upon infection with the protozoan parasite Leishmania major (L. major), susceptible BALB/c mice develop non healing lesions associated with the maturation of CD4+ TH2 cells secreting IL-4. In contrast, resistant C57BL/6 mice are able to heal their lesions, because of CD4+ TH1 cell expansion and production of high levels of IFNy, which synergizes with tumour necrosis factor (TNF) in activating macrophages to their microbicidal state. In our study we showed that C57BL/6 mice lacking both TNF and Fas ligand (FasL) infected with L. major neither resolved their lesions nor controlled L. major replication despite a strong TH1 response. Although comparable inducible nitric oxide synthase (iNOs) was measured in single or double deficient mice, only mice deficient in FasL failed to control the parasite replication. Moreover FasL synergized with IFNy for the induction of leishmanicidal activity within macrophages infected with L. major in vitro. Addition of FasL to IFNy stimulated macrophages led to their activation, as reflected by the secretion of tumour necrosis factor and nitrite oxide, as well as the induction of their microbicidal activity, resulting in the killing of intracellular L. major. While FasL along with IFNy and iNOs appeared to be essential for the complete control of intracellular pathogen replication, the contribution of TNF appeared more important in controlling the inflammation on the site of infection. Macrophage activation via Fas pathway preceded cell death, which occurred a few days after Fas mediated activation. This program cell death was independent of caspase enzymatic activities as revealed by the lack of effect of ZVAD-fmk, a pan-caspase inhibitor. These results suggested that the Fas-FasL pathway, as part of the classical activation pathway of the macrophages, is essential in the stimulation of macrophage leading to a microbicidal state and to AICD, and may thus contribute to the pathogenesis of L. major infection.
Resumo:
We have investigated the secretion of interferon alpha (IFN-alpha), IFN-gamma, interleukin-1alpha (IL-1alpha), IL-1beta, IL-2 and tumour necrosis factor alpha (TNF-alpha) in whole blood cell cultures (WBCCs) of colorectal cancer patients upon mitogen stimulation. Whereas the values for IL-1beta and TNF-alpha remained virtually unchanged in comparison with healthy control subjects, WBCCs of colorectal cancer patients secreted significantly lower amounts of IFN-alpha (P < 0.005), IFN-gamma (P < 0.0001), IL-1alpha (P < 0.0001) and IL-2 (P < 0.05). This reduction correlated with the progression of the disease. The total leucocyte and monocyte population were almost identical in both groups. In contrast, a dramatic depletion of lymphocytes was observed in colorectal cancer patients, which affected both lymphocyte counts (P < 0.0005) and their distribution (P < 0.0001). Our results suggest a selective suppression of cytokines in colorectal cancer patients that is related to tumour burden. Several mechanisms might account for this phenomenon, one of which might be lymphocyte depletion.
Resumo:
Recombinant human tumour necrosis factor (TNF) has a selective effect on angiogenic vessels in tumours. Given that it induces vasoplegia, its clinical use has been limited to administration through isolated limb perfusion (ILP) for regionally advanced melanomas and soft tissue sarcomas of the limbs. When combined with the alkylating agent melphalan, a single ILP produces a very high objective response rate. In melanoma, the complete response (CR) rate is around 80% and the overall objective response rate greater than 90%. In soft tissue sarcomas that are inextirpable, ILP is a neoadjuvant treatment resulting in limb salvage in 80% of the cases. The CR rate averages 20% and the objective response rate is around 80%. The mode of action of TNF-based ILP involves two distinct and successive effects on the tumour-associated vasculature: first, an increase in endothelium permeability leading to improved chemotherapy penetration within the tumour tissue, and second, a selective killing of angiogenic endothelial cells resulting in tumour vessel destruction. The mechanism whereby these events occur involves rapid (of the order of minutes) perturbation of cell-cell adhesive junctions and inhibition of alphavbeta3 integrin signalling in tumour-associated vessels, followed by massive death of endothelial cells and tumour vascular collapse 24 hours later. New, promising approaches for the systemic use of TNF in cancer therapy include TNF targeting by means of single chain antibodies or endothelial cell ligands, or combined administration with drugs perturbing integrin-dependent signalling and sensitizing angiogenic endothelial cells to TNF-induced death.
Resumo:
Treatment of B cell lymphoma patients with MoAbs specific for the common B cell marker (CD20) has shown a good overall response rate, but the number of complete remissions is still very low. The use of MoAbs coupled to radioisotopes can improve the results, but induces undesirable myelodepression. As an alternative, we proposed to combine the specificity of MoAbs with the immunogenicity of T cell epitopes. We have previously shown that an anti-Ig lambda MoAb coupled to an MHC class II-restricted universal T cell epitope peptide P2 derived from tetanus toxin induces efficient lysis of a human B cell lymphoma by a specific CD4+ T cell line. Here we demonstrate that the antigen presentation properties of the MoAb peptide conjugate are maintained using a MoAb directed against a common B cell marker, CD19, which is known to be co-internalized with the B cell immunoglobulin receptor. In addition, we provide evidence that B cell lysis is mediated by the Fas apoptosis pathway, since Fas (CD95), but not tumour necrosis factor receptor (TNFr) or TNF-related receptors, is expressed by the target B cells, and FasL, but not perforin, is expressed by the effector T cells. These results show that B cell lymphomas can be 'foreignized' by MoAb-peptide P2 conjugates directed against the common B cell marker CD19 and eliminated by peptide P2-specific CD4+ T cells, via the ubiquitous Fas receptor. This approach, which bridges the specificity of passive antibody therapy with an active T cell immune response, may be complementary to and more efficient than the present therapy results with unconjugated chimeric anti-CD20 MoAbs.
Resumo:
Interleukin (IL)-12p40, a subunit of IL-12p70 and IL-23, has previously been shown to inhibit IL-12p70 activity and interferon-gamma (IFN-gamma) production. However, recent evidence has suggested that the role of IL-12p40 is more complex. To study the contribution of IL-12p40 to immune responses against mycobacterial infections, we have used transgenic (tg) mice overexpressing IL-12p40 under the control of a major histocompatibility complex-II promoter. The IL-12p40 transgene was expressed during steady state at concentrations of 129 +/- 25 ng/ml of serum and 75 +/- 13 ng per spleen, while endogenous IL-12p40 was hardly detectable in control littermates. Bacille Calmette-Guérin (BCG) infection strongly induced the expression of IL-12p40 transgene in infected organs, and IL-12p40 monomeric and dimeric forms were identified in spleen of IL-12p40 tg mice. Excessive production of IL-12p40 resulted in a 14-fold increase in IL-12p70 serum levels in tg mice versus non-transgenic mice. IL-23 was also strongly elevated in the serum and spleens of IL-12p40 tg mice through BCG infection. While IFN-gamma and tumour necrosis factor protein levels were similar in IL-12p40 tg and non-transgenic mice, Th2 type immune responses were reduced in IL-12p40 tg mice. The number of BCG granulomas and macrophage expressing inducible nitric oxide synthase were similar in IL-12p40 tg and non-transgenic mice. IL-12p40 tg mice were as resistant as non-transgenic mice to BCG and Mycobacterium tuberculosis infections as they could efficiently control bacillary growth. These data show that high amounts of IL-12p40 promotes IL-12p70 and IL-23 formation, but that does not affect T helper 1 type immune responses and granuloma function, thus leading to normal mycobacterial clearance in infected organs.
Resumo:
Haemorrhagic shock and encephalopathy syndrome (HSES) is a devastating disorder affecting infants. So far no cases have been reported in Switzerland. It is characterised by the abrupt onset of hyperpyrexia, shock, encephalopathy, diarrhoea, disseminated intravascular coagulation (DIC) and renal and hepatic failure in previously healthy infants. Severe hypoglycaemia has been repeatedly reported in association with HSES. However, the pathophysiology of the hypoglycaemia is not clear. We report on two infants (2 and 7 months old) with typical HSES, both of whom were presented with nonketotic hypoglycaemia. In the first case, plasma insulin was 23 pmol/l at the time of hypoglycaemia (0.1 mmol/l). In the second case, increased values for interleukin-6 (IL-6) (319 pg/ml) and IL-8 (1382 pg/ml) were found 24 hours after admission, whereas IL-1 and tumour necrosis factor-alpha (TNF-alpha) were not measurable. Alpha-1-antitrypsin was decreased (0.6 g/l). In hyperpyrexic, unconscious and shocked infants, HSES should be considered and hypoglycaemia should be specifically looked for. Hypoglycaemia is not caused by hyperinsulinism but may be secondary to the release of cytokines.
Treatment of autoinflammatory diseases: results from the Eurofever Registry and a literature review.
Resumo:
OBJECTIVE: To evaluate the response to treatment of autoinflammatory diseases from an international registry and an up-to-date literature review. METHODS: The response to treatment was studied in a web-based registry in which clinical information on anonymised patients with autoinflammatory diseases was collected retrospectively as part of the Eurofever initiative. Participating hospitals included paediatric rheumatology centres of the Paediatric Rheumatology International Trial Organisation network and adult centres with a specific interest in autoinflammatory diseases. The following diseases were included: familial Mediterranean fever (FMF), cryopyrin-associated periodic syndromes (CAPS), tumour necrosis factor (TNF)-receptor associated periodic syndrome (TRAPS), mevalonate kinase deficiency (MKD), pyogenic arthritis pustulosis acne (PAPA) syndrome, deficiency of interleukin-1 receptor antagonist (DIRA), NLRP12-related periodic fever and periodic fever aphthosis pharyngitis adenitis (PFAPA) syndrome. Cases were independently validated by experts for each disease. A literature search regarding treatment of the abovementioned diseases was also performed using Medline and Embase. RESULTS: 22 months from the beginning of the enrolment, complete information on 496 validated patients was available. Data from the registry in combination with evidence from the literature confirmed that colchicine is the treatment of choice for FMF and IL-1 blockade for DIRA and CAPS. Corticosteroids on demand probably represent a valid therapeutic strategy for PFAPA, but also for MKD and TRAPS. Patients with poorly controlled MKD, TRAPS, PAPA or FMF may benefit from IL-1 blockade; anti-TNF treatment may represent a possible valuable alternative. CONCLUSIONS: In the absence of high-grade evidence, these results could serve as a basis for therapeutic guidelines and to identify candidate drugs for future therapeutic trials.
Resumo:
Efficacy and tumour selectivity of photodynamic therapy with two clinically approved sensitizers (mTHPC, verteporfin) were assessed for focal intracavitary photodynamic therapy (PDT) in rodents with malignant pleural mesothelioma (MPM) at recommended drug-light conditions and at escalating sensitizer dosages. MPM tumours were generated in 15 Fischer rats by subpleural mediastinal tumour cell injection followed after 5 days by intracavitary PDT with light delivery monitored by in situ dosimetry. Animals were intravenously sensitized either with mTHPC (0.1 mg/kg, n = 3; 0.2 mg/kg, n = 3) followed after 4 days by illumination with 20 J/cm(2) at 652 nm, or with verteporfin (0.6 mg/kg, n = 3; 1.2 mg/kg, n = 3) followed after 20 min by illumination with 100 J/cm(2) at 689 nm. Three untreated tumour-bearing animals served as controls. Histological evaluation of the treated tumour and of adjacent normal organs was performed 10 days after tumour implantation. The extent of PDT-induced tumour necrosis was compared to the non-necrosed area and expressed in percentage. A locally invasive growing MPM tumour (3.1 +/- 1 mm diameter) without spontaneous necrosis diameter was found in all animals. For both sensitizers, focal intracavitary PDT was well tolerated at drug-light conditions recommended for clinical applications. Mediastinal organs were spared for both sensitizers but verteporfin resulted in a higher extent of tumour necrosis (80%) than mTHPC (50%). Drug dose escalation revealed a higher extent of PDT-related tumour necrosis for both sensitizers (mTHPC 55%, verteporfin 88%), however, verteporfin-PDT was associated with a higher toxicity than mTHPC-PDT.
Resumo:
BACKGROUND: Gamma-glutamyltransferase (GGT) regulates apoptotic balance and promotes cancer progression and invasion. Higher pretherapeutic GGT serum levels have been associated with worse outcomes in various malignancies, but there are no data for renal cell carcinoma (RCC). METHODS: Pretherapeutic GGT serum levels and clinicopathological parameters were retrospectively evaluated in 921 consecutive RCC patients treated with nephrectomy at a single institution between 1998 and 2013. Gamma-glutamyltransferase was analysed as continuous and categorical variable. Associations with RCC-specific survival were assessed with Cox proportional hazards models. Discrimination was measured with the C-index. Decision-curve analysis was used to evaluate the clinical net benefit. The median postoperative follow-up was 45 months. RESULTS: Median pretherapeutic serum GGT level was 25 U l(-1). Gamma-glutamyltransferase levels increased with advancing T (P<0.001), N (P=0.006) and M stages (P<0.001), higher grades (P<0.001), and presence of tumour necrosis (P<0.001). An increase of GGT by 10 U l(-1) was associated with an increase in the risk of death from RCC by 4% (HR 1.04, P<0.001). Based on recursive partitioning-based survival tree analysis, we defined four prognostic categories of GGT: normal low (<17.5 U l(-1)), normal high (17.5 to <34.5 U l(-1)), elevated (34.5 to <181.5 U l(-1)), and highly elevated (⩾181.5 U l(-1)). In multivariable analyses that adjusted for the effect of standard features, both continuously and categorically coded GGT were independent prognostic factors. Adding GGT to a model that included standard features increased the discrimination by 0.9% to 1.8% and improved the clinical net benefit. CONCLUSIONS: Pretherapeutic serum GGT is a novel and independent prognostic factor for patients with RCC. Stratifying patients into prognostic subgroups according to GGT may be used for patient counselling, tailoring surveillance, individualised treatment planning, and clinical trial design.
Resumo:
Lymphocyte homeostasis is a balance between lymphocyte proliferation and lymphocyte death. Tight control of apoptosis is essential for immune function, because its altered regulation can result in cancer and autoimmunity. Signals from members of the tumour-necrosis-factor receptor (TNF-R) family, such as Fas and TNF-R1, activate the caspase cascade and result in lymphocyte death by apoptosis. Anti-apoptotic proteins, such as FLIP (also known as FLICE/caspase-8 inhibitory protein) have recently been identified. FLIP expression is tightly regulated in T cells and might be involved in the control of both T-cell activation and death. Abnormal expression of FLIP might have a role not only in autoimmune diseases, but also in tumour development and cardiovascular disorders.