996 resultados para Tumor suppression


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Human Papillomavirus, HPV, is the main etiological factor for cervical cancer. Different studies show that in women infected with HPV there is a positive correlation between lesion grade and number of infiltrating macrophages, as well as with IL-10 higher expression. Using a HPV16 associated tumor model in mice, TC-1, our laboratory has demonstrated that tumor infiltrating macrophages are M2-like, induce T cell regulatory phenotype and play an important role in tumor growth. M2 macrophages secrete several cytokines, among them IL-10, which has been shown to play a role in T cell suppression by tumor macrophages in other tumor models. In this work, we sought to establish if IL-10 is part of the mechanism by which HPV tumor associated macrophages induce T cell regulatory phenotype, inhibiting anti-tumor activity and facilitating tumor growth. Results TC-1 tumor cells do not express or respond to IL-10, but recruit leukocytes which, within the tumor environment, produce this cytokine. Using IL-10 deficient mice or blocking IL-10 signaling with neutralizing antibodies, we observed a significant reduction in tumor growth, an increase in tumor infiltration by HPV16 E7 specific CD8 lymphocytes, including a population positive for Granzyme B and Perforin expression, and a decrease in the percentage of HPV specific regulatory T cells in the lymph nodes. Conclusions Our data shows that in the HPV16 TC-1 tumor mouse model, IL-10 produced by tumor macrophages induce regulatory phenotype on T cells, an immune escape mechanism that facilitates tumor growth. Our results point to a possible mechanism behind the epidemiologic data that correlates higher IL-10 expression with risk of cervical cancer development in HPV infected women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Transplantation von allogenen hämatopoetischen Stammzellen stellt für viele Patienten mit hämatologischen Erkrankungen, wie beispielsweise akuter Leukämie, oftmals die einzige kurative Therapieoption dar. Die Erkennung von Empfängerantigenen durch immunkompetente Zellen des Spenders bietet dabei die Basis für erwünschte Graft-versus-Tumor-Effekte, verursacht jedoch häufig außerdem die unerwünschte Graft-versus-Host Disease (GvHD), eine mitunter schwerwiegende Komplikation. In der vorliegenden Arbeit wurden potentielle Mechanismen zur Hemmung alloreaktiver CD4+ und CD8+ T-Zellen (TZ) und folglich zur Hemmung der akuten GvHD in einem experimentellen GvHD-Modell untersucht, welches auf dem Transfer von allogenen Zellen zwischen MHC-inkompatiblen Mausstämmen basiert. Die vorliegende Arbeit weist zum Einen darauf hin, dass das Fehlen MyD88- und TRIF-vermittelter Toll-like-Rezeptor-Signale zumindest im Rahmen des hier verwendeten Transplantationsmodells nicht zwingend zu einer Hemmung der akuten GvHD führt. Zum Anderen konnte belegt werden, dass CD4+ CD25+ regulatorische T-Zellen (Tregs) kompetente Suppressoren der durch alloreaktive CD4+ und CD8+ TZ ausgelösten akuten GvHD darstellen. In weiterführenden Experimenten ist gezeigt worden, dass die Tregs sich verschiedener Mechanismen bedienen, um ihre Zielzellen zu inhibieren. Das suppressive Zytokin Interleukin-10 kann als löslicher Mediator zumindest in vitro offenbar eine Rolle bei der Treg-vermittelten Suppression alloreaktiver TZ spielen. Da jedoch auch Tregs aus Interleukin-10-defizienten Spendern die GvHD-Entstehung in den Empfängern abschwächen konnten, müssen noch weitere Mechanismen involviert sein. Es konnte in einer gemischten Leukozyten Reaktion in vitro eine zellkontaktabhängige Kommunikation mittels gap junctions hauptsächlich zwischen den Tregs und den allogenen Dendritischen Zellen (DCs) nachgewiesen werden, welche prinzipiell den Transfer von cAMP möglich macht. Die Kommunikation zwischen Tregs und DCs resultierte in einem supprimierten Phänotyp der DCs, gekennzeichnet durch eine verminderte Expression kostimulatorischer Moleküle auf ihrer Oberfläche. Solche supprimierten DCs können als Folge die alloreaktiven Spender-TZ vermutlich nicht aktivieren. Das cAMP-erhöhende Rolipram konnte in einer gemischten Leukozyten Reaktion in vitro die Proliferation alloreaktiver CD4+ und CD8+ TZ hemmen. Daneben konnte die Treg-vermittelte Suppression alloreaktiver TZ und der GvHD in vivo durch die zusätzliche Verabreichung von Rolipram noch gesteigert werden. Im letzten Kapitel dieser Arbeit wurde beschrieben, dass die alleinige Aktivierung alloreaktiver CD8+ TZ ausreichend ist, um eine akute GvHD auszulösen. In diesem Zusammenhang konnte nachgewiesen werden, dass CD4+ CD25+ Tregs die akute GvHD auch in einer scheinbar MHC-II-unabhängigen Weise hemmen können. Zusammenfassend belegt die vorliegende Arbeit, dass Tregs in einem MHC-inkompatiblen Transplantationsmodell alloreaktive CD4+ und CD8+ TZ und folglich die Entstehung einer GvHD effizient hemmen können. Bei der Hemmung der GvHD kommen wahrscheinlich verschiedene Mechanismen zum Tragen. Zumindest in vivo scheint von Tregs produziertes Interleukin-10 eine untergeordnete Rolle bei der Suppression alloreaktiver TZ und der GvHD zu spielen, hierbei steht vermutlich vielmehr der cAMP-abhängige Suppressionsmechanismus im Vordergrund.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T helper (Th) 9 cells are an important subpopulation of the CD4+ T helper cells. Due to their ability to secrete Interleukin-(IL-)9, Th9 cells essentially contribute to the expulsion of parasitic helminths from the intestinal tract but they play also an immunopathological role in the course of asthma. Recently, a beneficial function of Th9 cells in anti-tumor immune responses was published. In a murine melanoma tumor model Th9 cells were shown to enhance the anti-melanoma immune response via the recruitment of CD8+ T cells, dendritic cells and mast cells. In contrast to Th9 effector cells regulatory T cells (Tregs) are able to control an immune response with the aid of different suppressive mechanisms. Based on their ability to suppress an immune response Tregs are believed to be beneficial in asthma by diminishing excessive allergic reactions. However, concerning cancer they can have a detrimental function because Tregs inhibit an effective anti-tumor immune reaction. Thus, the analysis of Th9 suppression by Tregs is of central importance concerning the development of therapeutic strategies for the treatment of cancer and allergic diseases and was therefore the main objective of this PhD thesis.rnIn general it could be demonstrated that the development of Th9 cells can be inhibited by Tregs in vitro. The production of the lineage-specific cytokine IL-9 by developing Th9 cells was completely suppressed at a Treg/Th9 ratio of 1:1 on the transcriptional (qRT-PCR) as well as on the translational level (ELISA). In contrast, the expression of IRF4 that was found to strongly promote Th9 development was not reduced in the presence of Tregs, suggesting that IRF4 requires additional transcription factors to induce the differentiation of Th9 cells. In order to identify such factors, which regulate Th9 development and therefore represent potential targets for Treg-mediated suppressive mechanisms, a transcriptome analysis using “next-generation sequencing” was performed. The expression of some genes which were found to be up- or downregulated in Th9 cells in the presence of Tregs was validated with qRT-PCR. Time limitations prevented a detailed functional analysis of these candidate genes. Nevertheless, the analysis of the suppressive mechanisms revealed that Tregs probably suppress Th9 cells via the increase of the intracellular cAMP concentration. In contrast, IL-9 production by differentiated Th9 cells was only marginally affected by Tregs in vitro and in vivo analysis (asthma, melanoma model). Hence, Tregs represent very effective inhibitors of Th9 development whereas they have only a minimal suppressive influence on differentiated Th9 cells.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melanoma is known to be highly resistant to chemotherapy. Treatment with high dose IL-2 has shown significant clinical benefit in a minority of metastatic melanoma patients and has lead to long term survival in a few cases. However, this treatment is associated with excessive multiorgan toxicities, which severely limits its use. We hypothesize that one mechanism of effective IL-2 therapy is through the direct upregulation of IL-24 production in melanoma tumors and subsequent IL-24 mediated tumor growth suppression. Five melanoma cell lines were treated with high dose recombinant hIL-2 at 1000U/ml. Three of the cell lines (A375, WM1341, WM793) showed statistically significant increases in their levels of IL-24 protein when measured by Western blotting, while the remaining two lines (WM35, MeWo) remained negative for IL-24 message and protein. This increase in IL-24 was abolished by either preincubating with an anti-IL-2 antibody or by blocking the IL-2 receptor directly with antibodies against the receptor chains. We also demonstrated by ELISA that these three cell lines secrete IL-24 protein in higher amounts when stimulated with IL-2 than do untreated cells. These cells were found to contain IL-2R beta and gamma message by RT-PCR and also expressed higher levels of IL-24 when treated with IL-15, which shares the IL-2R beta chain. Thus we propose that IL-2 is signaling through IL-2R beta on some melanoma cells to upregulate IL-24 protein expression. To address the biological function of IL-2 in melanoma cells, five cell lines were treated with IL-2 and cell viability determined. Cell growth was found to be significantly decreased by day 4 in the IL-24 positive cell lines while no effect on growth was seen in WM35 or MeWo. Incubating the cells with anti-IL-24 antibody or transfecting with IL-24 siRNA effectively negated the growth suppression seen with IL-2. These data support our hypothesis that in addition to its immunotherapeutic effects, IL-2 also acts directly on some melanoma tumors and that the IL-24 and IL-2R beta status of a tumor may be useful in predicting patient response to high dose IL-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of tumor suppressor function in the multistep process of carcinogenesis was studied in the human teratocarcinoma cell line PA-1. Early passage PA-1 cells ($<$P100) are preneoplastic while late passage ($>$P100) PA-1 cells are spontaneously transformed. Previous work demonstrated a causal role for the N-ras oncogene in the neoplastic transformation of this cell line and the gene was cloned. A clonal cell line established at passage 40 has been shown to suppress the neoplastic transformation potential of the PA-1 N-ras oncogene in gene transfer experiments. This phenotype has been termed SRT+ for suppression of ras transformation. A clonal cell line established at passage 63 is neoplastically transformed by the N-ras in similar gene transfer experiments and is regarded as srt$-$. Somatic cell hybrids were formed between the SRT+ cell and two different N-ras transformed srt$-$ cells. The results indicate that five of the seven independent hybrid clones, and all 14 subclones, failed to form tumors in the nude mouse tumor assay. Chromosomal analysis of rare neoplastic segregants which arose from suppressed hybrid populations demonstrate that the general loss of chromosomes correlates with the reemergence of neoplastic transformation. Karyotype analyses demonstrate a statistically correlative loss of chromosomes 1, 4, 19, and to a lesser extent 11, 14, and 16. DNA hybridization analysis demonstrates a single copy of the intact N-ras oncogene in parental cells, suppressed hybrids, and neoplastically transformed hybrids. These results indicate that functional ras transformation suppression is a trans-dominant trait which may be controlled by sequences residing on particular chromosomes in the human genome. Furthermore, the suppression of ras transformation results from a unique step in the multistep process of carcinogenesis that is different from the induction of immortality. Thus, the neoplastic process of the PA-1 cell line involves at least three steps: (1) induction of immortality, (2) activation of the N-ras oncogene, and (3) loss of tumor suppressor function. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonpapillary renal cell carcinoma (RCC) is an adult cancer of the kidney which occurs both in familial and sporadic forms. The familial form of RCC is associated with translocations involving chromosome 3 with a breakpoint at 3p14-p13. Studies focused on sporadic RCC have shown two commonly deleted regions at 3p14.3-p13 and 3p21.3. In addition, a more distal region mapping to 3p26-p25 has been linked to the Von Hippel Lindau (VHL) disease gene. A large proportion of VHL patients develop RCC. The short arm of human chromosome 3 can, therefore, be dissected into three distinct regions which could encode tumor suppressor genes for RCC. Loss or inactivation of one or more of these loci may be an important step in the genesis of RCC.^ I have used the technique of microcell-mediated chromosome transfer to introduce an intact, normal human chromosome 3 and defined fragments of 3p, dominantly marked with pSV2neo, into the highly malignant RCC cell line SN12C.19. The introduction of chromosome 3 and of a centric fragment of 3p, encompassing 3p14-q11, into SN12C.19 resulted in dramatic suppression of tumor growth in nude mice. Another defined deletion hybrid contained the region 3p12-q24 of the introduced human chromosome and failed to suppress tumorigenicity. These data define the region 3p14-p12, the most proximal region of high frequency allele loss in sporadic RCC as well as the region containing the translocation breakpoint in familial RCC, to contain a novel tumor suppressor locus involved in RCC. We have designated this locus nonpapillary renal cell carcinoma-1 (NRC-1). Furthermore, we have functional evidence that NRC-1 controls the growth of RCC cells by inducing rapid cell death in vivo. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular and cytogenetic analyses of human glioblastomas have revealed frequent genetic alterations, including major deletions in chromosomes 9, 10, and 17, suggesting the presence of glioma-associated tumor suppressor genes on these chromosomes. To examine this hypothesis, copies of chromosomes 2, 4, and 10 derived from a human fibroblast cell line were independently introduced into a human glioma cell line, U251, by microcell-mediated chromosomal transfer. Successful transfer of chromosomes in each case was confirmed by resistance to the drug G418, indicating the presence of the neomycin-resistance gene previously integrated into each transferred chromosome. The presence of novel chromosomes and or chromosomal fragments was also demonstrated by molecular and karyotypic analyses. The hybrid clones containing either a novel chromosome 4 or chromosome 10 displayed suppression of the tumorigenic phenotype in vivo and suppression of the transformed phenotype in vitro, while cells containing a transferred chromosome 2 failed to alter their tumorigenic phenotype. The hybrid cells containing chromosome 4 or 10 exhibited a significant decrease in their saturation density, altered cellular morphology at high cell density, but only a slight decrease in their exponential growth rate. A dramatic decrease was observed in growth of cells with chromosome 4 or 10 in soft agarose, with the number and size of the colonies being greatly reduced, compared to the parental or chromosome 2 containing cells. The introduction of chromosome 4 or 10 also completely suppressed tumor formation in nude mice. These studies indicate that chromosome 10, as hypothesized, and chromosome 4, a novel finding for gliomas, harbor tumor suppressor loci that may be directly involved in the initiation or progression of normal glial precursors to human glioblastoma multiforme. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND CONTEXT In canine intervertebral disc (IVD) disease, a useful animal model, only little is known about the inflammatory response in the epidural space. PURPOSE To determine messenger RNA (mRNA) expressions of selected cytokines, chemokines, and matrix metalloproteinases (MMPs) qualitatively and semiquantitatively over the course of the disease and to correlate results to neurologic status and outcome. STUDY DESIGN/SETTING Prospective study using extruded IVD material of dogs with thoracolumbar IVD extrusion. PATIENT SAMPLE Seventy affected and 13 control (24 samples) dogs. OUTCOME MEASURES Duration of neurologic signs, pretreatment, neurologic grade, severity of pain, and outcome were recorded. After diagnostic imaging, decompressive surgery was performed. METHODS Messenger RNA expressions of interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF), interferon (IFN)γ, MMP-2, MMP-9, chemokine ligand (CCL)2, CCL3, and three housekeeping genes was determined in the collected epidural material by Panomics 2.0 QuantiGene Plex technology. Relative mRNA expression and fold changes were calculated. Relative mRNA expression was correlated statistically to clinical parameters. RESULTS Fold changes of TNF, IL-1β, IL-2, IL-4, IL-6, IL-10, IFNγ, and CCL3 were clearly downregulated in all stages of the disease. MMP-9 was downregulated in the acute stage and upregulated in the subacute and chronic phase. Interleukin-8 was upregulated in acute cases. MMP-2 showed mild and CCL2 strong upregulation over the whole course of the disease. In dogs with severe pain, CCL3 and IFNγ were significantly higher compared with dogs without pain (p=.017/.020). Dogs pretreated with nonsteroidal anti-inflammatory drugs revealed significantly lower mRNA expression of IL-8 (p=.017). CONCLUSIONS The high CCL2 levels and upregulated MMPs combined with downregulated T-cell cytokines and suppressed pro-inflammatory genes in extruded canine disc material indicate that the epidural reaction is dominated by infiltrating monocytes differentiating into macrophages with tissue remodeling functions. These results will help to understand the pathogenic processes representing the basis for novel therapeutic approaches. The canine IVD disease model will be rewarding in this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skin cancer is the most common malignancy in humans. Although highly treatable, non-melanoma skin cancer is commonly followed by other non-cutaneous malignancies. Ultraviolet radiation (UVR) acts as both tumor initiator and promoter, and also results in the suppression of specific immune responses. The systemic suppression of immune responses is initiated by DNA damage, which promotes IL-10 production, an important cytokine as anti-IL-10 can abrogate the suppression, and upregulates the pro-apoptotic proteins Fas and Fas ligand (FasL). FasL is a critical factor for UV-induced immune suppression, and the suppressor cell induced by UV expresses FasL. ^ We hypothesized that the microenvironment affects Fas/FasL interactions, and that these interactions are important to the phenomenon of UV induced immune suppression. To determine the effects of the interaction of FasL and IL-10, splenocytes isolated from C57Bl/6 mice were cultured in the presence or absence of IL-10 post-mitogenic activation. We determined that IL-10 protects from Fas-mediated apoptosis by lowering Fas sensitivity and lowering the levels of either Fas or FasL. This protection is stronger when IL-10 is given immediately after mitogenic activation, and does not increase any of the inhibitors of apoptosis studied. In vivo, splenocytes from UV-irradiated mice are resistant to Fas-mediated apoptosis and present very high levels of IL-10, lowered Fas sensitivity and lowered caspase cleavage despite higher expression of Fas and FasL than non-irradiated mice. ^ UV-induced immune suppression affects female mice preferentially, which led us to look at prolactin as a possible component of this suppression since this hormone has also been associated with increased skin carcinogenesis. The interaction of FasL and prolactin results in suppression of the delayed type hypersensitivity response to Candida albicans. This lack of response depends on FasL as is not seen in gld mice. Similar to UV-induced immune suppression, the suppression is caused by a Th2 deviation, and correlates with a significant increase in Fas expression. In the presence of UV, the effects of prolactin seemed to be protective, and UV actually restores the DTH response.^ Taken together, these observations suggest that the microenvironment dictates the outcome of the interaction of FasL with Fas going from promoting apoptosis to preventing apoptosis or mediating a Th2 deviation and suppression of a Th1 response. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulatory T cells expressing the fork-head box transcription factor 3 (Foxp3) play a central role in the dominant control of immunological tolerance. Compelling evidence obtained from both animal and clinical studies have now linked the expansion and accumulation of Foxp3+ regulatory T cells associated with tumor lesions to the failure of immune-mediated tumor rejection. However, further progress of the field is hampered by the gap of knowledge regarding their phenotypic, functional, and the developmental origins in which these tumor-associated Foxp3+ regulatory T cells are derived. Here, we have characterized the general properties of tumor-associated Foxp3+ regulatory T cells and addressed the issue of tumor microenvironment mediated de-novo induction by utilizing a well known murine tumor model MCA-205 in combination with our BAC Foxp3-GFP reporter mice and OT-II TCR transgenic mice on the RAG deficient background (RAG OT-II). De-novo induction defines a distinct mechanism of converting non-regulatory precursor cells to Foxp3+ regulatory T cells in the periphery as opposed to the expansion of pre-existing regulatory T cells formed naturally during thymic T cell development. This mechanism is of particularly importance to how tumors induce tumor-antigen-specific suppressor cells to subvert anti-tumor immune responses. Our study has found that tumor-associated Foxp3+ regulatory T cells are highly activated, undergo vigorous proliferation, are more potent by in-vitro suppression assays, and express higher levels of membrane-bound TGF-β1 than non-tumor regulatory T cells. With Foxp3-GFP reporter mice or RAG OT-II TCR transgenic mice, we show that tumor tissue can induce detectable de-novo generation of Foxp3+ regulatory T cells of both polyclonal or antigen specific naïve T cells. This process was not only limited for subcutaneous tumors but for lung tumors as well. Furthermore, this process required the inducing antigen to be co-localized within the tumor tissue. Examination of tumor tissue revealed an abundance of myeloid CD11b+ antigen-presenting cells that were capable of inducing Foxp3+ regulatory T cells. Taken together, these findings elucidate the general attributes and origins of tumor-associated Foxp3+ regulatory T cells in the tumor microenvironment and in their role in the negative regulation of tumor immunity.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic exposure of the airways to cigarette smoke induces inflammatory response and genomic instability that play important roles in lung cancer development. Nuclear factor kappa B (NF-κB), the major intracellular mediator of inflammatory signals, is frequently activated in preneoplastic and malignant lung lesions. ^ Previously, we had shown that a lung tumor suppressor GPRC5A is frequently repressed in human non-small cell lung cancers (NSCLC) cells and lung tumor specimens. Recently, other groups have shown that human GPRC5A transcript levels are higher in bronchial samples of former than of current smokers. These results suggested that smoking represses GPRC5A expression and thus promotes the occurrence of lung cancer. We hypothesized that cigarette smoking or associated inflammatory response repressed GPRC5A expression through NF-κB signaling. ^ To determine the effect of inflammation, we examined GPRC5A protein expression in several lung cell lines following by TNF-α treatment. TNF-α significantly suppressed GPRC5A expression in normal small airway epithelial cells (SAEC) as well as in Calu-1 cells. Real-time PCR analysis indicated that TNF-α inhibits GPRC5A expression at the transcriptional level. NF-κB, the major downstream effectors of TNF-α signaling, mediates TNF-α-induced repression of GPRC5A because over-expression of NF-κB suppressed GPRC5A. To determine the region in the GPRC5A promoter through which NF-κB acts, we examined the ability of TNF-α to inhibit a series of reporter constructs with different deletions of GPRC5A promoter. The luciferase assay showed that the potential NF-κB binding sites containing region are irresponsible for TNF-α-induced suppression. Further analysis using constructs with different deletions in p65 revealed that NF-κB-mediated repression of GPRC5A is transcription-independent. Co-immunoprecipitation assays revealed that NF-κB could form a complex with RAR/RXR heterodimer. Moreover, the inhibitory effect of NF-κB has been found to be proportional to NF-κB/RAR ratio in luciferase assay. Finally, Chromatin IP demonstrated that NF-κB/p65 bound to GPRC5A promoter as well as RAR/RXR and suppressed transcription. Taken together, we propose that inflammation-induced NF-κB activation disrupts the RA signaling and suppresses GPRC5A expression and thus contributes to the oncogenesis of lung cancer. Our studies shed new light on the pathogenesis of lung cancer and potentially provide novel interventions for preventing and treating this disease. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glioblastoma multiforme is the most common form of brain cancer that presents patients with a poor prognosis that has remained unchanged over the past few decades. The tumor suppressor phosphatase PTEN antagonizes one of the major oncogenic pathways involved in the progression of glioblastoma, and is frequently deleted in this cancer type. Contrary to our expectations, we found that most glioblastoma cells expressing endogenous PTEN also harbor basal PI-3K/AKT activation mainly attributable to impaired PTEN membrane localization. This alteration correlated with a shift of the adaptor protein NHERF1, which contributes to PTEN membrane recruitment in normal cells, from the membrane to the cytoplasm. In cells expressing membrane-localized NHERF1, only simultaneous PTEN and NHERF1 depletion achieved AKT activation, suggesting the involvement of additional PI-3K/AKT suppressor regulated by NHERF1. We identified these novel interactors of NHERF1 as the PHLPP1 and PHLPP2 phosphatases. ^ NHERF1 directly interacted and recruited both PHLPP proteins to the membrane and, through both NHERF1 PDZ domains, assembled ternary complexes consisting of PTEN-NHERF1-PHLPP. Only simultaneous depletion of PTEN and PHLPP1 significantly activated AKT and increased proliferation in cells with membrane-localized NHERF1. Analysis of glioblastoma human tumors revealed frequent loss of membrane-localized NHERF1. On the other hand, targeting of NHERF1 to the membrane achieved suppression of AKT and cell proliferation. Our findings reveal a novel mechanism for PI-3K/AKT regulation by the synergistic cooperation between two important tumor suppressors, PTEN and PHLPP, via the scaffold protein NHERF1. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proinflammatory cytokine TNFa plays critical roles in promoting malignant cell proliferation, angiogenesis, and tumor metastasis in many cancers. However, the mechanism of TNFa-mediated tumor development remains unclear. Here, we show that IKKa, an important downstream kinase of TNFa, interacts with and phosphorylates FOXA2 at S107/S111, thereby suppressing FOXA2 transactivation activity and leading to decreased NUMB expression, and further activates the downstream NOTCH pathway and promotes cell proliferation and tumorigenesis. Moreover, we found that levels of IKKa, pFOXA2 (S107/ 111), and activated NOTCH1 were significantly higher in hepatocellular carcinoma tumors than in normal liver tissues and that pFOXA2 (S107/111) expression was positively correlated with IKKa and activated NOTCH1 expression in tumor tissues. Therefore, dysregulation of NUMB-mediated suppression of NOTCH1 by TNFa/IKKa-associated FOXA2 inhibition likely contributes to inflammationmediated cancer pathogenesis. Here, we report a TNFa/IKKa/FOXA2/NUMB/NOTCH1 pathway that is critical for inflammation-mediated tumorigenesis and may provide a target for clinical intervention in human cancer.