996 resultados para Tuberculosis Vaccines -- administration


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whilst oral vaccination is a potentially preferred route in terms of patient adherence and mass vaccination, the ability to formulate effective oral vaccines remains a challenge. The primary barrier to oral vaccination is effective delivery of the vaccine through the GI tract owing to the many obstacles it presents, including low pH, enzyme degradation and bile-salt solubilization, which can result in breakdown/deactivation of a vaccine. For effective immune responses after oral administration, particulates need to be taken up bythe M cells however, these are few in number. To enhance M-cell uptake, particle characteristics can be optimized with particle size, surface charge, targeting groups and bioadhesive properties all being considerations. Yet improved uptake may not translate into enhanced immune responses and formulating particulates with inherent adjuvant properties can offer advantages. Within this article, we establish the options available for consideration when building effective oral particulate vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liposomes offer an ideal platform for the delivery of subunit vaccines, due to their versatility and flexibility, which allows for antigen as well as immunostimulatory lipids and TLR agonists to become associated with these bilayered vesicles. Liposomes have the ability to protect vaccine antigen, as well as enhance delivery to antigen presenting cells, whilst the importance of cationic surface charge for delivery of TB subunit vaccines and formation of an â˜antigen depotâ may play a key role in boosting cell-mediated immunity and Th1 immune responses. The rational design of vaccine adjuvants requires the thorough investigation into the physicochemical characteristics that dictate the function of a liposomal adjuvant. Within this thesis, physicochemical characteristics were investigated in order to show any effects on the biodistribution profiles and the ensuing immune responses of these formulations. Initially the role of liposome charge within the formulation was investigated and subsequently their efficacy as vaccine adjuvants in combination with their biodistribution was measured to allow the role of formulation in vaccine function to be considered. These results showed that cationic surface charge, in combination with high loading of H56 vaccine antigen through electrostatic binding, was crucial in the promotion of the â˜depot-effectâ at the injection site which increases the initiation of Th1 cell-mediated immune responses that are required to offer protection against tuberculosis. To further investigate this, different methods of liposome production were also investigated where antigen incorporation within the vesicles as well as surface adsorption were adopted. Using the dehydration-rehydration (DRV) method (where liposomes are freeze-dried in the presence of antigen to promote antigen encapsulation) and the double emulsion (DE) method, a range of liposomes entrapping antigen were formulated. Variation in the liposome preparation method can lead to antigen entrapment within the delivery system which has been shown to be greater for DRV-formulated liposomes compared to their DE-counterparts. This resulted in no significant effect on the vaccine biodistribution profile, as well as not significantly altering the efficacy of cationic liposomal adjuvants. To further enhance the efficacy of these systems, the addition of TLR agonists either at the vesicle surface as well as within the delivery system has been displayed through variation in the preparation method. Anionic liposomal adjuvants have been formulated, which displayed rapid drainage from the injection site to the draining lymph nodes and displayed a reduction in measured Th1 immune responses. However, variation in the preparation method can alter the immune response profile for anionic liposomal adjuvants with a bias in immune response to Th2 responses being noted. Through the use of high shear mixing and stepwise incorporation, the efficient loading of TLR agonist within liposomes has been shown. However, interestingly the conjugation between lipid and non-electrostatically bound TLR agonist, followed by insertion into the bilayer of DDA/TDB resulted in localised agonist retention at the injection site and further stimulation of the Th1 immune response at the SOI, spleen and draining lymphatics as well as enhanced antibody titres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review focuses on the use of particulate delivery systems for the purposes of immunization. This includes poly(lactide-co-glycolide) (PLGA), ISCOMs, liposomes, niosomes, virosomes, chitosan, and other biodegradable polymers. These systems are evaluated in terms of their use as carriers for protein subunit and DNA vaccines. There is an extensive focus on recent literature, the understanding of biological interactions, and relation of this to our present understanding of immunological mechanisms of action. In addition, there is consideration of formulation techniques including emulsification, solvent diffusion, DNA complexation, and entrapment. The diversity of formulation strategies presented is a testament to the exponential growth and interest in the area of vaccine delivery systems. A case study for the application of particulate vaccine carriers is assessed in terms of vaccine development and recent insights into the possible design and application of vaccines against two of the most important pathogens that threaten mankind and for which there is a significant need: Mycobacterium tuberculosis and human immunodeficiency virus. This review addresses the rationale for the use of particulate delivery systems in vaccine design in the context of the diversity of carriers for DNA- and protein-based vaccines and their potential for application in terms of the critical need for effective vaccines. © 2005 by Begell House, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vesicular adjuvant systems composing dimethyldioctadecylammonium (DDA) can promote both cell-mediated and humoral immune responses to the tuberculosis vaccine fusion protein in mice. However, these DDA preparations were found to be physically unstable, forming aggregates under ambient storage conditions. Therefore there is a need to improve the stability of such systems without undermining their potent adjuvanticity. To this end, the effect of incorporating non-ionic surfactants, such as 1-monopalmitoyl glycerol (MP), in addition to cholesterol (Chol) and trehalose 6,6â²-dibehenate (TDB), on the stability and efficacy of these vaccine delivery systems was investigated. Differential scanning calorimetry revealed a reduction in the phase transition temperature (T c) of DDA-based vesicles by ∼12°C when MP and cholesterol (1:1 molar ratio) were incorporated into the DDA system. Transmission electron microscopy (TEM) revealed the addition of MP to DDA vesicles resulted in the formation of multi-lamellar vesicles. Environmental scanning electron microscopy (ESEM) of MP-Chol-DDA-TDB (16:16:4:0.5 μmol) indicated that incorporation of antigen led to increased stability of the vesicles, perhaps as a result of the antigen embedding within the vesicle bilayers. At 4°C DDA liposomes showed significant vesicle aggregation after 28 days, although addition of MP-Chol or TDB was shown to inhibit this instability. Alternatively, at 25°C only the MP-based systems retained their original size. The presence of MP within the vesicle formulation was also shown to promote a sustained release of antigen in-vitro. The adjuvant activity of various systems was tested in mice against three subunit antigens, including mycobacterial fusion protein Ag85b-ESAT-6, and two malarial antigens (Merozoite surface protein 1, MSP1, and the glutamate rich protein, GLURP). The MP- and DDA-based systems induced antibody responses at comparable levels whereas the DDA-based systems induced more powerful cell-mediated immune responses. © 2006 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fundamentals of this research were to exploit non-ionic surfactant technology for delivery and administration of vaccine antigens across the oral route and to gain a better understanding of vaccine trafficking. Using a newly developed method for manufacture of non-ionic surfactant vesicles (niosomes and bilosomes) lower process temperatures were adopted thus reducing antigen exposure to potentially damaging conditions. Vesicles prepared by this method offered high protection to enzymatic degradation, with only ~10 % antigen loss measured when vesicles incorporating antigen were exposed to enzyme digestion. Interestingly, when formulated using this new production method, the addition of bile salt to the vesicles offered no advantage in terms of stability within simulated gastro-intestinal conditions. Considering their ability to deliver antigen to their target site, results demonstrated that incorporation of antigen within vesicles enhanced delivery and targeting of the antigen to the Peyer's Patch, again with niosomes and bilosomes offering similar efficiency. Delivery to both the Peyer's patches and mesentery lymphatics was shown to be dose dependent at lower concentrations, with saturation kinetics applying at higher concentrations. This demonstrates that in the formulation of vaccine delivery systems, the lipid/antigen dose ratio is not only a key factor in production cost, but is equally a key factor in the kinetics of delivery and targeting of a vaccine system. © 2013 Controlled Release Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fundamentals of this research were to exploit non-ionic surfactant technology for delivery and administration of vaccine antigens across the oral route and to gain a better understanding of vaccine trafficking. Using a newly developed method for manufacture of non-ionic surfactant vesicles (niosomes and bilosomes) lower process temperatures were adopted thus reducing antigen exposure to potentially damaging conditions. Vesicles prepared by this method offered high protection to enzymatic degradation, with only ~10 % antigen loss measured when vesicles incorporating antigen were exposed to enzyme digestion. Interestingly, when formulated using this new production method, the addition of bile salt to the vesicles offered no advantage in terms of stability within simulated gastro-intestinal conditions. Considering their ability to deliver antigen to their target site, results demonstrated that incorporation of antigen within vesicles enhanced delivery and targeting of the antigen to the Peyer's Patch, again with niosomes and bilosomes offering similar efficiency. Delivery to both the Peyer's patches and mesentery lymphatics was shown to be dose dependent at lower concentrations, with saturation kinetics applying at higher concentrations. This demonstrates that in the formulation of vaccine delivery systems, the lipid/antigen dose ratio is not only a key factor in production cost, but is equally a key factor in the kinetics of delivery and targeting of a vaccine system. © 2013 Controlled Release Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liposomes not only offer the ability to enhance drug delivery, but can effectively act as vaccine delivery systems and adjuvants. Their flexibility in size, charge, bilayer rigidity and composition allow for targeted antigen delivery via a range of administration routes. In the development of liposomal adjuvants, the type of immune response promoted has been linked to their physico-chemical characteristics, with the size and charge of the liposomal particles impacting on liposome biodistribution, exposure in the lymph nodes and recruitment of the innate immune system. The addition of immunostimulatory agents can further potentiate their immunogenic properties. Here, we outline the attributes that should be considered in the design and manufacture of liposomal adjuvants for the delivery of sub-unit and nucleic acid based vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+ T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the attenuated Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccine has been used since 1921, tuberculosis (TB) control still proceeds at a slow pace. The main reason is the variable efficacy of BCG protection against TB among adults, which ranges from 0-80%. Subsequently, the mc2-CMX vaccine was developed with promising results. Nonetheless, this recombinant vaccine needs to be compared to the standard BCG vaccine. The objective of this study was to evaluate the immune response induced by mc2-CMX and compare it to the response generated by BCG. BALB/c mice were immunised with both vaccines and challenged with Mycobacterium tuberculosis (Mtb). The immune and inflammatory responses were evaluated by ELISA, flow cytometry, and histopathology. Mice vaccinated with mc2-CMX and challenged with Mtb induced an increase in the IgG1 and IgG2 levels against CMX as well as recalled specific CD4+ T-cells that produced T-helper 1 cytokines in the lungs and spleen compared with BCG vaccinated and challenged mice. Both vaccines reduced the lung inflammatory pathology induced by the Mtb infection. The mc2-CMX vaccine induces a humoral and cellular response that is superior to BCG and is efficiently recalled after challenge with Mtb, although both vaccines induced similar inflammatory reductions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis (TB) remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV). Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs) in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis (TB) caused by Mycobacterium bovis and closely related members of the Mycobacterium tuberculosis complex continues to affect humans and animals worldwide and its control requires vaccination of wildlife reservoir species such as Eurasian wild boar (Sus scrofa). Vaccination efforts for TB control in wildlife have been based primarily on oral live BCG formulations. However, this is the first report of the use of oral inactivated vaccines for controlling TB in wildlife. In this study, four groups of 5 wild boar each were vaccinated with inactivated M. bovis by the oral and intramuscular routes, vaccinated with oral BCG or left unvaccinated as controls. All groups were later challenged with a field strain of M. bovis. The results of the IFN-gamma response, serum antibody levels, M. bovis culture, TB lesion scores, and the expression of C3 and MUT genes were compared between these four groups. The results suggested that vaccination with heat-inactivated M. bovis or BCG protect wild boar from TB. These results also encouraged testing combinations of BCG and inactivated M. bovis to vaccinate wild boar against TB. Vaccine formulations using heat-inactivated M. bovis for TB control in wildlife would have the advantage of being environmentally safe and more stable under field conditions when compared to live BCG vaccines. The antibody response and MUT expression levels can help differentiating between vaccinated and infected wild boar and as correlates of protective response in vaccinated animals. These results suggest that vaccine studies in free-living wild boar are now possible to reveal the full potential of protecting against TB using oral M. bovis inactivated and BCG vaccines

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paracoccidioidomycosis (PCM) and tuberculosis (TB) are chronic granulomatous infectious diseases, in which the main form of contraction is through inhalation of the microorganism-Paracoccidioides brasiliensis and Mycobacterium tuberculosis. Oral involvement of PCM is observed in up to 70 % of the cases and usually presents clinically as ulcerations with granular surface showing tiny hemorrhagic areas. Oral presentation of TB is rare with prevalence smaller than 0.5 % of all cases. Clinical presentation of oral TB mainly consists of single ulcers with irregular limits and necrotic base. A 70-year-old immunocompetent man presented simultaneously oral PCM and pulmonary TB. Medical history revealed a previous diagnosis of pulmonary TB; however, even under treatment for TB, the patient remained with oral lesions and intense pulmonary fibrosis. The physician requested P. brasiliensis serological analysis, which resulted positive. Although the combination of PCM and TB has been reported in the literature, it is still considered an uncommon condition and their diagnosis may represent a challenge to healthcare professionals because of the similarity between their clinical and radiological presentations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No effective vaccine or immunotherapy is presently available for patients with the hemolytic uremic syndrome (HUS) induced by Shiga-like toxin (Stx) producedbyenterohaemorragic Escherichia coli (EHEC) strains, such as those belonging to the O157:H7 serotype. In this work we evaluated the performance of Bacillus subtilis strains, a harmless spore former gram-positive bacterium species, as a vaccine vehicle for the expression of Stx2B subunit (Stx2B). A recombinant B. subtilis vaccine strain expressing Stx2B under the control of a stress inducible promoter was delivered to BALB/c mice via oral, nasal or subcutaneous routes using both vegetative cells and spores. Mice immunized with vegetative cells by the oral route developed low but specific anti-Stx2B serum IgG and fecal IgA responses while mice immunized with recombinant spores developed anti-Stx2B responses only after administration via the parenteral route. Nonetheless, serum anti-Stx2B antibodies raised in mice immunized with the recombinant B. subtilis strain did not inhibit the toxic effects of the native toxin, both under in vitro and in vivo conditions, suggesting that either the quantity or the quality of the induced immune response did not support an effective neutralization of Stx2 produced by EHEC strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a little-noticed trend involving human immunodeficiency virus (HIV)-infected patients suspected of having tuberculosis: the triple-treatment regimen recommended in Brazil for years has been potentially ineffective in over 30% of the cases. This proportion may be attributable to drug resistance (to at least 1 drug) and/or to infection with non-tuberculous mycobacteria. This evidence was not disclosed in official statistics, but arose from a systematic review of a few regional studies in which the diagnosis was reliably confirmed by mycobacterial culture. This paper clarifies that there has long been ample evidence for the potential benefits of a four-drug regimen for co-infected patients in Brazil and it reinforces the need for determining the species and drug susceptibility in all positive cultures from HIV-positive patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: Desenvolver método para planejamento e avaliação de campanhas de vacinação contra a raiva animal. MÃTODOS: O desenvolvimento da metodologia baseou-se em sistemas de informação geográfica para estimar a população e a densidade animal (canina e felina) por setores censitários e subprefeituras do município de São Paulo, em 2002. O número de postos de vacinação foi estimado para atingir uma dada cobertura vacinal. Foram utilizadas uma base de dados censitários para a população humana, e estimativas para razões cão:habitante e gato:habitante. RESULTADOS: Os números estimados foram de 1.490.500 cães e 226.954 gatos em São Paulo, uma densidade populacional de 1.138,14 animais domiciliados por km². Foram vacinados, na campanha de 2002, 926.462 animais, garantindo uma cobertura vacinal de 54%. O número total estimado de postos no município para atingir uma cobertura vacinal de 70%, vacinando em média 700 animais por posto foi de 1.729. Estas estimativas foram apresentadas em mapas de densidade animal, segundo setores censitários e subprefeituras. CONCLUSÃES: A metodologia desenvolvida pode ser aplicada de forma sistemática no planejamento e no acompanhamento das campanhas de vacinação contra a raiva, permitindo que sejam identificadas áreas de cobertura vacinal crítica.