988 resultados para Tropical cyclones
Resumo:
The case study 3 team viewed the mitigation of noise and air pollution generated in the transport corridor that borders the study site to be a paramount driver of the urban design solution. These key urban planning strategies were adopted: * Spatial separation from transport corridor pollution source. A linear green zone and environmental buffer was proposed adjacent to the transport corridor to mitigate the environmental noise and air quality impacts of the corridor, and to offer residents opportunities for recreation * Open space forming the key structural principle for neighbourhood design. A significant open space system underpins the planning and manages surface water flows. * Urban blocks running on east-west axis. The open space rationale emphasises an east-west pattern for local streets. Street alignment allows for predominantly north-south facing terrace type buildings which both face the street and overlook the green courtyard formed by the perimeter buildings. The results of the ESD assessment of the typologies conclude that the design will achieve good outcomes through: * Lower than average construction costs compared with other similar projects * Thermal comfort; A good balance between daylight access and solar gains is achieved * The energy rating achieved for the units is 8.5 stars.
Resumo:
This paper investigates energy saving potential of commercial building by living wall and green façade system using Envelope Thermal Transfer Value (ETTV) equation in Sub-tropical climate of Australia. Energy saving of four commercial buildings was quantified by applying living wall and green façade system to the west facing wall. A field experimental facility, from which temperature data of living wall system was collected, was used to quantify wall temperatures and heat gain under controlled conditions. The experimental parameters were accumulated with extensive data of existing commercial building to quantify energy saving. Based on temperature data of living wall system comprised of Australian native plants, equivalent temperature of living wall system has been computed. Then, shading coefficient of plants in green façade system has been included in mathematical equation and in graphical analysis. To minimize the air-conditioned load of commercial building, therefore to minimize the heat gain of commercial building, an analysis of building heat gain reduction by living wall and green façade system has been performed. Overall, cooling energy performance of commercial building before and after living wall and green façade system application has been examined. The quantified energy saving showed that only living wall system on opaque part of west facing wall can save 8-13 % of cooling energy consumption where as only green façade system on opaque part of west facing wall can save 9.5-18% cooling energy consumption of commercial building. Again, green façade system on fenestration system on west facing wall can save 28-35 % of cooling energy consumption where as combination of both living wall on opaque part of west facing wall and green façade on fenestration system on west facing wall can save 35-40% cooling energy consumption of commercial building in sub-tropical climate of Australia.
Resumo:
Zero energy buildings (ZEB) and zero energy homes (ZEH) are a current hot topic globally for policy makers (what are the benefits and costs), designers (how do we design them), the construction industry (can we build them), marketing (will consumers buy them) and researchers (do they work and what are the implications). This paper presents initial findings from actual measured data from a 9 star (as built), off-ground detached family home constructed in south-east Queensland in 2008. The integrated systems approach to the design of the house is analysed in each of its three main goals: maximising the thermal performance of the building envelope, minimising energy demand whilst maintaining energy service levels, and implementing a multi-pronged low carbon approach to energy supply. The performance outcomes of each of these stages are evaluated against definitions of Net Zero Carbon / Net Zero Emissions (Site and Source) and Net Zero Energy (onsite generation vs primary energy imports). The paper will conclude with a summary of the multiple benefits of combining very high efficiency building envelopes with diverse energy management strategies: a robustness, resilience, affordability and autonomy not generally seen in housing.
Resumo:
This paper investigates cooling energy performance of commercial building before and after green roof and living wall application based on integrated building heat gain model developed from Overall Thermal Transfer Value (OTTV) of building wall and steady state heat transfer process of roof in sub-tropical climate. Using the modelled equation and eQUEST energy simulation tool, commercial building envelope parameters and relevant heat gain parameters have been accumulated to analyse the heat gain and cooling energy consumption of commercial building. Real life commercial building envelope and air-conditioned load data for the sub-tropical climate zone have been collected and compared with the modelled analysis. Relevant temperature data required for living wall and green roof analysis have been collected from experimental setup comprised of both green roof and west facing living wall. Then, Commercial building heat flux and cooling energy performance before and after green roof and living wall application have been scrutinized.
Resumo:
This paper considers the literary landscape of contemporary Brisbane and pays particular attention to the relationship between sub-tropical spaces (homes, streets, and clubs) and local writing. ‘Dripping Sweat’ proposes that within the new urban cool of Brisbane’s cultural life there is nostalgia for the sub-tropical environment that continues to intrude on contemporary fiction. The paper considers the architecture of both public and private spaces and discusses how the literary imagination re-designs contemporary Brisbane with a selective appropriation of environmental settings.
Resumo:
The current rapid urban growth throughout the world manifests in various ways and historically cities have grown, similarly, alternately or simultaneously between planned extensions and organic informal settlements (Mumford, 1989). Within cities different urban morphological regions can reveal different contexts of economic growth and/or periods of dramatic social/technological change (Whitehand, 2001, 105). Morpho-typological study of alternate contexts can present alternative models and contribute to the present discourse which questions traditional paradigms of urban planning and design (Todes et al, 2010). In this study a series of cities are examined as a preliminary exploration into the urban morphology of cities in ‘humid subtropical’ climates. From an initial set of twenty, six cities were selected: Sao Paulo, Brazil; Jacksonville, USA; Maputo, Mozambique; Kanpur, India; Hong Kong, China; and Brisbane, Australia. The urban form was analysed from satellite imagery at a constant scale. Urban morphological regions (types) were identified as those demonstrating particular consistant characteristics of form (density, typology and pattern) different to their surroundings when examined at a constant scale. This analysis was correlated against existing data and literature discussing the proliferation of two types of urban development, ‘informal settlement’ (defined here as self-organised communities identifiable but not always synonymous with ‘slums’) and ‘suburbia’ (defined here as master planned communities of generally detached houses prevalent in western society) - the extreme ends of a hypothetical spectrum from ‘planned’ to ‘spontaneous’ urban development. Preliminary results show some cities contain a wide variety of urban form ranging from the highly organic ‘self-organised’ type to the highly planned ‘master planned community’ (in the case of Sao Paulo) while others tend to fall at one end of the planning spectrum or the other (more planned in the cases of Brisbane and Jacksonville; and both highly planned and highly organic in the case of Maputo). Further research will examine the social, economical and political drivers and controls which lead to this diversity or homogeneity of urban form and speculates on the role of self-organisation as a process for the adaptation of urban form.
Resumo:
A new decision-making tool that will assist designers in the selection of appropriate daylighting solutions for buildings in tropical locations has been previously proposed by the authors. Through an evaluation matrix that prioritizes the parameters that best respond to the needs of tropical climates (e.g. reducing solar gain and protection from glare) the tool determines the most appropriate devices for specific climate and building inputs. The tool is effective in demonstrating the broad benefits and limitations of the different daylight strategies for buildings in the tropics. However for thorough analysis and calibration of the tool, validation is necessary. This paper presents a first step in the validation process. RADIANCE simulations were conducted to compare simulation performance with the performance predicted by the tool. To this end, an office building case study in subtropical Brisbane, Australia, and five different daylighting devices including openings, light guiding systems and light transport systems were simulated. Illuminance, light uniformity, daylight penetration and glare analysis were assessed for each device. The results indicate the tool can appropriately rank and recommend daylighting strategies based on specific building inputs for tropical and subtropical regions, making it a useful resource for designers.
Resumo:
Analysis of fossils from cave deposits at Mount Etna (eastern-central Queensland) has established that a species-rich rainforest palaeoenvironment existed in that area during the middle Pleistocene. This unexpected finding has implications for several fields (e.g., biogeography/phylogeography of rainforest-adapted taxa, and the impact of climate change on rainforest communities), but it was unknown whether the Mount Etna sites represented a small refugial patch of rainforest or was more widespread. In this study numerous bone deposits in caves in north-east Queensland are analysed to reconstruct the environmental history of the area during the late Quaternary. Study sites are in the Chillagoe/Mitchell Palmer and Broken River/Christmas Creek areas. The cave fossil records in these study areas are compared with dated (middle Pleistocene-Holocene) cave sites in the Mount Etna area. Substantial taxonomic work on the Mount Etna faunas (particularly dasyurid marsupials and murine rodents) is also presented as a prerequisite for meaningful comparison with the study sites further north. Middle Pleistocene sites at Mount Etna contain species indicative of a rainforest palaeoenvironment. Small mammal assemblages in the Mount Etna rainforest sites (>500-280 ka) are unexpectedly diverse and composed almost entirely of new species. Included in the rainforest assemblages are lineages with no extant representatives in rainforest (e.g., Leggadina), one genus previously known only from New Guinea (Abeomelomys), and forms that appear to bridge gaps between related but morphologically-divergent extant taxa ('B-rat' and 'Pseudomys C'). Curiously, some taxa (e.g., Melomys spp.) are notable for their absence from the Mount Etna rainforest sites. After 280 ka the rainforest faunas are replaced by species adapted to open, dry habitats. At that time the extinct ‘rainforest’ dasyurids and rodents are replaced by species that are either extant or recently extant. By the late Pleistocene all ‘rainforest’ and several ‘dry’ taxa are locally or completely extinct, and the small mammal fauna resembles that found in the area today. The faunal/environmental changes recorded in the Mount Etna sites were interpreted by previous workers as the result of shifts in climate during the Pleistocene. Many samples from caves in the Chillagoe/Mitchell-Palmer and Broken River/Christmas Creek areas are held in the Queensland Museum’s collection. These, supplemented with additional samples collected in the field as well as samples supplied by other workers, were systematically and palaeoecologically analysed for the first time. Palaeoecological interpretation of the faunal assemblages in the sites suggests that they encompass a similar array of palaeoenvironments as the Mount Etna sites. ‘Rainforest’ sites at the Broken River are here interpreted as being of similar age to those at Mount Etna, suggesting the possibility of extensive rainforest coverage in eastern tropical Queensland during part of the Pleistocene. Likewise, faunas suggesting open, dry palaeoenvironments are found at Chillagoe, the Broken River and Mount Etna, and may be of similar age. The 'dry' faunal assemblage at Mount Etna (Elephant hole Cave) dates to 205-170 ka. Dating of one of the Chillagoe sites (QML1067) produced a maximum age for the deposit of approximately 200 ka, and the site is interpreted as being close to that age, supporting the interpretation of roughly contemporaneous deposition at Mount Etna and Chillagoe. Finally, study sites interpreted as being of late Pleistocene-Holocene age show faunal similarities to sites of that age near Mount Etna. This study has several important implications for the biogeography and phylogeography of murine rodents, and represents a major advance in the study of the Australian murine fossil record. Likewise the survey of the northern study areas is the first systematic analysis of multiple sites in those areas, and is thus a major contribution to knowledge of tropical Australian faunas during the Quaternary. This analysis suggests that climatic changes during the Pleistocene affected a large area of eastern tropical Queensland in similar ways. Further fieldwork and dating is required to properly analyse the geographical extent and timing of faunal change in eastern tropical Queensland.
Resumo:
Background: In sub-tropical and tropical Queensland, a legacy of poor housing design,minimal building regulations with few compliance measures, an absence of post-construction performance evaluation and various social and market factors has led to a high and growing penetration of, and reliance on, air conditioners to provide thermal comfort for occupants. The pervasive reliance on air conditioners has arguably impacted on building forms, changed cultural expectations of comfort and social practices for achieving comfort, and may have resulted in a loss of skills in designing and constructing high performance building envelopes. Aim: The aim of this paper is to report on initial outcomes of a project that sought to determine how the predicted building thermal performance of twenty-five houses in subtropical and tropical Queensland compared with objective performance measures and comfort performance as perceived by occupants. The purpose of the project was to shed light on the role of various supply chain agents in the realisation of thermal performance outcomes. Methodology: The case study methodology embraced a socio-technical approach incorporating building science and sociology. Building simulation was used to model thermal performance under controlled comfort assumptions and adaptive comfort conditions. Actual indoor climate conditions were measured by temperature and relative humidity sensors placed throughout each house, whilst occupants’ expectations of thermal comfort and their self-reported behaviours were gathered through semi-structured interviews and periodic comfort surveys. Thermal imaging and air infiltration tests, along with building design documents, were analysed to evaluate the influence of various supply chain agents on the actual performance outcomes. Results: The results clearly show that in the housing supply chain – from designer to constructor to occupant – there is limited understanding from each agent of their role in contributing to, or inhibiting, occupants’ comfort.
Resumo:
This paper describes the development of an analytical model used to simulate the fatigue behaviour of roof cladding during the passage of a tropical cyclone. The model incorporated into a computer program uses wind pressure data from wind tunnel tests in combination with time history information on wind speed and direction during a tropical cyclone, and experimental fatigue characteristics data of roof claddings. The wind pressure data is analysed using a rainflow form of analysis, and a fatigue damage index calculated using a modified form of Miner's rule. Some of the results obtained to date and their significance in relation to the review of current fatigue tests are presented. The model appears to be reasonable for comparative estimation of fatigue life, but an improvement of Miner's rule is required for the prediction of actual fatigue life.
Resumo:
OBJECTIVES To determine whether the seroprevalence of antibodies to varicella zoster virus (VZV) in adults is similar to that reported in tropical populations elsewhere. METHODS We measured the seroprevalence of VZV IgG antibodies, using an enzyme immunoassay (EIA) in women attending an antenatal clinic in an urban centre in tropical Australia. RESULTS The overall seroprevalence of VZV antibodies in 298 women was 92% (95% CI 88-95), with no difference between women who spent their childhoods in the tropics and colleagues. None of the overseas-born women was seronegative. CONCLUSION The seroprevalence of VZV antibodies in this tropical population in Australia is as high as that reported from temperate regions, suggesting that social and cultural factors and population mobility are more important determinants of age distribution of VZV immunity than tropical climate.
Resumo:
A key challenge for the 21st Century is to make our cities more liveable and foster economically sustainable, environmentally responsible, and socially inclusive communities. Design thinking, particularly a human-centred approach, offers a way to tackle this challenge. Findings from two recent Australian research projects highlight how facilitating sustainable, liveable communities in a humid sub-tropical environment requires an in-depth understanding of people’s perspectives, experiences and practices. Project 1 (‘Research House’) documents the reflections of a family who lived in a ‘test’ sustainable house for two years, outlining their experience and evaluations of universal design and sustainable technologies. The study family was very impressed with the natural lighting, natural ventilation, spaciousness and ease of access, which contributed significantly to their comfort and the liveability of their home. Project 2 (‘Inner-Urban High Density Living’) explored Brisbane residents’ opinions about high-density living, through a survey (n=636), interviews (n=24), site observations (over 300 hours) and environmental monitoring, assessing opinions on the liveability of their individual dwelling, the multi-unit host building and the surrounding neighbourhood. Nine areas, categorised into three general domains, were identified as essential for enhancing high density liveability. In terms of the dwelling, thermal comfort/ventilation, natural light, noise mitigation were important; shared space, good neighbour protocols, and support for environmentally sustainable behaviour were desired in the building/complex; and accessible/sustainable transport, amenities and services, sense of community were considered important in the surrounding neighbourhood. Combined, these findings emphasise the importance and complexity associated with designing liveable building, cities and communities, illustrating how adopting a design thinking, human-centred approach will help create sustainable communities that will meet the needs of current and future generations.