967 resultados para Tropical Rainforest
Resumo:
Over the past two decades, several fungal outbreaks have occurred, including the high-profile 'Vancouver Island' and 'Pacific Northwest' outbreaks, caused by Cryptococcus gattii, which has affected hundreds of otherwise healthy humans and animals. Over the same time period, C. gattii was the cause of several additional case clusters at localities outside of the tropical and subtropical climate zones where the species normally occurs. In every case, the causative agent belongs to a previously rare genotype of C. gattii called AFLP6/VGII, but the origin of the outbreak clades remains enigmatic. Here we used phylogenetic and recombination analyses, based on AFLP and multiple MLST datasets, and coalescence gene genealogy to demonstrate that these outbreaks have arisen from a highly-recombining C. gattii population in the native rainforest of Northern Brazil. Thus the modern virulent C. gattii AFLP6/VGII outbreak lineages derived from mating events in South America and then dispersed to temperate regions where they cause serious infections in humans and animals.
Resumo:
Determining the relative roles of vicariance and selection in restricting gene flow between populations is of central importance to the evolutionary process of population divergence and speciation. Here we use molecular and morphological data to contrast the effect of isolation (by mountains and geographical distance) with that of ecological factors (altitudinal gradients) in promoting differentiation in the wedge-billed woodcreeper, Glyphorynchus spirurus, a tropical forest bird, in Ecuador. Tarsus length and beak size increased relative to body size with altitude on both sides of the Andes, and were correlated with the amount of moss on tree trunks, suggesting the role of selection in driving adaptive divergence. In contrast, molecular data revealed a considerable degree of admixture along these altitudinal gradients, suggesting that adaptive divergence in morphological traits has occurred in the presence of gene flow. As suggested by mitochondrial DNA sequence data, the Andes act as a barrier to gene flow between ancient subspecific lineages. Genome-wide amplified fragment length polymorphism markers reflected more recent patterns of gene flow and revealed fine-scale patterns of population differentiation that were not detectable with mitochondrial DNA, including the differentiation of isolated coastal populations west of the Andes. Our results support the predominant role of geographical isolation in driving genetic differentiation in G. spirurus, yet suggest the role of selection in driving parallel morphological divergence along ecological gradients.
Resumo:
Moss diversity at various sites in the Tropical Atlantic Rainforest of southeastern Brazil is high, with 338 taxa distributed among 49 families and 129 genera. Comparisons of species richness in the Tropical Atlantic Rainforest in southeastern Brazil suggest that the moss flora is not uniform, and that lowland, montane, submontane, and upper montane Atlantic rainforests have very different moss floras. Montane Atlantic Rainforest has the largest number of exclusive species and the highest species richness, Sub-Montane Atlantic Rainforest has intermediate species richness, while the Lowland Atlantic Rainforest has fewer species. The high diversity of the Montane Atlantic Rainforest could be explained by the diversity of climatic, edaphic, and physiographic changes of the vegetation. Sematophyllaceae accounted for 19% of the taxa in lowland forest, Meteoriaceae for 10% of the taxa in montane forests, and Dicranaceae for 18% of the taxa in upper montane forests. Taxa with broad Neotropical distributions (40% of the total taxa) are important elements in all the forests, while taxa restricted to Brazil comprise the second most important element in upper montane and montane forests.
Resumo:
The effects of disturbances on plant community structure in tropical forests have been widely investigated. However, a majority of these studies examined only woody species, principally trees, whereas the effects of disturbances on the whole assemblage of vascular plants remain largely unexplored. At the present study, all vascular plants < 5m tall were surveyed in four habitats: natural treefall gaps, burned forest, and their adjacent understorey. The burned area differed from the other habitats in terms of species composition. However, species richness and plant density did not differ between burned area and the adjacent understorey, which is in accordance to the succession model that predict a rapid recovery of species richness, but with a different species composition in areas under moderate disturbance. The treefall gaps and the two areas of understorey did not differ among themselves in terms of the number of individuals, number of species, nor in species composition. The absence of differences between the vegetation in treefall gaps and in understorey areas seems to be in agreement with the current idea that the species present in treefall gaps are directly related to the vegetation composition before gap formation. Only minimal differences were observed between the analyses that considered only tree species and those that considered all growth habits. This suggests that the same processes acting on tree species (the best studied group of plants in tropical forests) are also acting on the whole assemblage of vascular plants in these communities.
Resumo:
In this study we evaluated photosynthetic characteristics and patterns of biomass accumulation in seedlings of two tree species from a Semideciduous Tropical Forest of Brazil. Seedlings of Trema micrantha (L.) Blum. (pioneer) and Hymenaea courbaril (L.) var. stilbocarpa (Hayne) Lee & Langenh. (climax) were grown for 4 months under low light (LL) (5%-8% of sunlight) and high light (HL) (100% of sunlight). Under HL, T. micrantha showed higher CO2 assimilation rates (A CO2) and light saturation than H. courbaril. Under LL, A CO2 were higher in H. courbaril. Under LL, total chlorophyll and carotenoid contents per unit leaf area were higher in H. courbaril. Chlorophyll a/b ratio was higher in T. micrantha under both light regimes. A CO2 and Fv/Fm ratio at both pre-dawn and midday in H. coubaril were lower in HL indicating chronic photoinhibition. Thus, the climax species was more susceptible to photoinhibition than the pioneer. However, H. courbaril produced higher total biomass under both treatments showing high efficiency in the maintenance of a positive carbon balance. Thus, both species expressed characteristics that favor growth under conditions that resemble their natural microenvironments, but H. courbaril also grew under HL. The ecophysiological range of responses to contrasting light levels of this climax plant seems to be broader than generally observed for other rainforest climax species. We propose that this could be related to the particular spatio-temporal light regime of the semideciduous forests.
Resumo:
The Brazilian Atlantic Rainforest is a highly heterogeneous ecosystem comprising large numbers of tropical and subtropical habitats favorable to the development of cyanobacteria. Studies on cyanobacteria in this ecosystem are still rare, however, especially those involving unicellular and colonial types. The high biodiversity and endemism of this biome has been extremely impacted and fragmented, and less than 10% of its original vegetation cover remains today. We describe here a new species of a colonial cyanobacteria, Lemmermanniella terrestris, found on dry soils in a subtropical region of the Atlantic Rainforest in the municipality of Cananéia in southern São Paulo State, Brazil. This new taxon demonstrated all of the diacritical features of the genus Lemmermanniella but, unlike the other species of the genus, it was growing on the soil surface and not in an aquatic environment. A set of morphological features, including colonies composed of subcolonies, and cell dimensions, shapes and contents distinguish it from other species of the genus. Considering that species of Lemmermanniella are found in very distinct habitats (such as thermal and brackish waters) and that they maintain the same life cycle described for the genus in all of those environments, the morphological structures of the colonies can be used as reliable markers for identifying the genus, and its species differ primarily in relation to the habitats they occupy.
Resumo:
Este título introduce la variedad de vida que hay en el ambiente tropical, incluido el colibrí,la tarántula, el murciélago de fruta, a rana de árbol, insecto palo, mariposas y orugas, entre otros animales. El texto, ilustrado con fotografías, trabaja en tres niveles, con una introducción al tema, repleto de lectura sobre las características específicas y señalando detalles inusuales de cómo y porqué se han adaptado al medio ambiente. Cada ilustración está acompañada por los títulos sobre la vida, el tamaño, peso, velocidad de cada animal.
Resumo:
Leaf-cutting ants consume up to 10% of canopy leaves in the foraging area of their colony and therefore represent a key perturbation in the nutrient cycle of tropical forests. We used a chronosequence of nest sites on Barro, Colorado Island, Panama, to assess the influence of leaf-cutting ants (Atta colombica) on nutrient availability in a neotropical rainforest. Twelve nest sites were sampled, including active nests, recently abandoned nests (<1 year) and long-abandoned nests (>1 year). Waste material discarded by the ants down-slope from the nests contained large concentrations of nitrogen and phosphorus in both total and soluble forms, but decomposed within one year after the nests were abandoned. Despite this, soil under the waste material contained high concentrations of nitrate and ammonium that persisted after the disappearance of the waste, although soluble phosphate returned to background concentrations within one year of nest abandonment. Fine roots were more abundant in soil under waste than control soils up to one year after nest abandonment, but were not significantly different for older sites. In contrast to the waste dumps, soil above the underground nest chambers consistently contained lower nutrient concentrations than control soils, although this was not statistically significant. We conclude that the 'islands of fertility' created by leaf-cutting ants provide a nutritional benefit to nearby plants for less than one year after nest abandonment in the moist tropical environment of Barro Colorado Island. Published by Elsevier Ltd.
Resumo:
More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an “environmentally friendly” fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O3 concentrations will reach 100 parts per billion (109) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.
Resumo:
More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an "environmentally friendly'' fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O-3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O-3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O-3 concentrations will reach 100 parts per billion (10(9)) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.
Resumo:
In this review paper, the aim is to compare and contrast fossil pollen evidence for Holocene rainforest ecotonal dynamics at opposite ends of the Amazon basin – the southern ecotone in NE lowland Bolivia versus the northern ecotone in lowland Colombia. During the Holocene, tropical South America experienced major changes in precipitation (Silva Dias et al. 2009). Consideration of Amazonian rainforest dynamics over this time-frame may therefore provide important insights into rainforest responsiveness to climate change.
Resumo:
Accurate differentiation between tropical forest and savannah ecosystems in the fossil pollen record is hampered by the combination of: i) poor taxonomic resolution in pollen identification, and ii) the high species diversity of many lowland tropical families, i.e. with many different growth forms living in numerous environmental settings. These barriers to interpreting the fossil record hinder our understanding of the past distributions of different Neotropical ecosystems and consequently cloud our knowledge of past climatic, biodiversity and carbon storage patterns. Modern pollen studies facilitate an improved understanding of how ecosystems are represented by the pollen their plants produce and therefore aid interpretation of fossil pollen records. To understand how to differentiate ecosystems palynologically, it is essential that a consistent sampling method is used across ecosystems. However, to date, modern pollen studies from tropical South America have employed a variety of methodologies (e.g. pollen traps, moss polsters, soil samples). In this paper, we present the first modern pollen study from the Neotropics to examine the modern pollen rain from moist evergreen tropical forest (METF), semi-deciduous dry tropical forest (SDTF) and wooded savannah (cerradão) using a consistent sampling methodology (pollen traps). Pollen rain was sampled annually in September for the years 1999–2001 from within permanent vegetation study plots in, or near, the Noel Kempff Mercado National Park (NKMNP), Bolivia. Comparison of the modern pollen rain within these plots with detailed floristic inventories allowed estimates of the relative pollen productivity and dispersal for individual taxa to be made (% pollen/% vegetation or ‘p/v’). The applicability of these data to interpreting fossil records from lake sediments was then explored by comparison with pollen assemblages obtained from five lake surface samples.
Resumo:
Even among forest specialists, species-specific responses to anthropogenic forest fragmentation may vary considerably. Some appear to be confined to forest interiors, and perceive a fragmented landscape as a mosaic of suitable fragments and hostile matrix. Others, however, are able to make use of matrix habitats and perceive the landscape in shades of grey rather than black-and-white. We analysed data of 42 Chiroxiphia caudata (Blue Manakin), 10 Pyriglena leucoptera (White-shouldered Fire-eye) and 19 Sclerurus scansor (Rufous-breasted Leaftosser) radio-tracked in the Atlantic Rainforest of Brazil between 2003 and 2005. We illustrate how habitat preferences may determine how species respond to or perceive the landscape structure. We compared available with used habitat to develop a species-specific preference index for each of six habitat classes. All three species preferred old forest, but relative use of other classes differed significantly. S. scansor perceived great contrast between old forest and matrix, whereas the other two species perceived greater habitat continuity. For conservation planning, our study offers three important messages: (1) some forest specialist species are able to persist in highly fragmented landscapes; (2) some forest species may be able to make use of different anthropogenic habitat types to various degrees; whereas (3) others are restricted to the remaining forest fragments. Our study suggests species most confined to forest interiors to be considered as potential umbrella species for landscape-scale conservation planning.
Resumo:
Tropical forests have been subject to intense hunting of medium and large frugivores that are important in dispersing large-seeded species. It has been hypothesized that in areas with extinction or low abundance of medium and large-bodied animals the density of small rodents may increase. Therefore, this increment in the density of small rodents may compensate for the absence or low abundance of medium and large frugivores on seed removal and seed dispersal. Here, we fill up this gap in the literature by determining if seed removal, seed dispersal, and seed predation by small rodents (spiny rats, Trinomys inheringi and squirrels, Sciurus ingrami) are maintained in defaunated areas. We accessed seed removal, seed dispersal, seed predation, and seedling recruitment of an endemic Atlantic rainforest palm, Astrocaryum aculeatissimum, in a gradient of abundance of agoutis. We found that seed removal, scatter hoarding, and seed predation increase with the abundance of agoutis. In contrast, the proportion of dispersed but non-cached seeds decreased with the abundance of agoutis. We did not find any effect of the abundance of agoutis on seed dispersal distance, but we did find a positive trend on the density of seedlings. We concluded that small rodents do not compensate the low abundance of agoutis on seed removal, scatter hoarding, and seed predation of this palm tree. Moreover, areas in which agoutis are already extinct did not present any seed removal or scatter hoarding, not even by small rodents. This study emphasizes both the importance of agoutis in dispersing seeds of A. aculeatissimum and the collapse in seed dispersal of this palm in areas where agoutis are already extinct.
Resumo:
A variety of human-induced disturbances such as forest fragmentation and recovery after deforestation for pasture or agricultural activities have resulted in a complex landscape mosaic in the Una region of northeastern Brazil. Using a set of vegetation descriptors, we investigated the main structural changes observed in forest categories that comprise the major components of the regional landscape and searched for potential key descriptors that could be used to discriminate among different forest categories. We assessed the forest structure of five habitat categories defined as (I) interiors and (2) edges of large fragments of old-growth forest (>1000 ha), (3) interiors and (4) edges of small forest fragments (<100 ha), and (5) early secondary forests. Forest descriptors used here were: frequency of herbaceous lianas and woody climbers, number of standing dead trees, number of fallen trunks, litter depth, number of pioneer plants (early secondary and shade-intolerant species), vertical foliage stratification profile and distribution Of trees in different diameter classes. Edges and interiors of forest fragments were significantly different only in the number of standing dead trees. Secondary forests and edges of fragments showed differences in litter depth, fallen trunks and number of pioneer trees, and secondary forests were significantly different from fragment interiors in the number of standing dead trees and the number of pioneer trees. Horizontal and vertical structure evaluated via ordination analysis showed that fragment interiors, compared to secondary forests, were characterized by a greater number of medium (25-35 cm) and large (35-50 cm) trees and smaller numbers of thin trees (5-10 cm). There was great heterogeneity at the edges of small and large fragments, as these sites were distributed along almost the entire gradient. Most interiors of large and small fragments presented higher values of foliage densities at higher strata ( 15-20 m and at 20-25 m height), and lower densities at 1-5 m. All secondary forests and some fragment edge sites showed an opposite tendency. A discriminant function highlighted differences among forest categories, with transects of large fragment interiors and secondary forests representing two extremes along a disturbance gradient determined by foliage structure (densities at 15-20 m and 20-25 m), with the edges of both large and small fragments and the interiors of small fragments scattered across the gradient. The major underlying processes determining patterns of forest disturbance in the study region are discussed, highlighting the importance of forest fragments, independently of its size, as forests recovery after clear cut show a greatly distinct structure, with profound implications on fauna movements. (C) 2009 Elsevier BY. All rights reserved.