951 resultados para Tribasic lead sulphate
Resumo:
Using an iterative technique to obtain the exact solutions of the cubic Christoffel equation, the 21 elastic constants of copper sulphate pentahydrate have been determined at 25°C by the ultrasonic pulse echo method. The elastic constants, referred to the IRE recommended system of axes, are c11=5·65, c12=2·65, c13=3·21, c14=−0·33, c15=−0·08, c16=−0·39, c22=4·33, c23=3·47, c24=−0·07, c25=−0·21, c26=0·02, c33=5·69, c34=−0·44, c35=−0·21, c36=−0·16, c44=1·73, c45=0·09, c46=0·03, c55=1·22, c56=−0·26 and c66=1·00 in units of 1010 N m−2.
Resumo:
Dielectric observations on lithium hydrazinium sulphate have shown earlier that it is ferroelectric over a range of temperatures from below −15° C. to above 80° C. and a new type of hydrogen bond rearrangement which would allow the protons to migrate along the chain has also been suggested by others. The infrared spectrum of LiH z S in the form of mull and as single crystal sections parallel and perpendicular to the ‘C’ axis exhibit about 21 well-defined absorption maxima. The position and the width of the maxima agree with the known structure of the crystal according to which the hydrazine group exists in the form of the hydrazinium ion, NH2·NH3+ and the observed N+-H frequencies agree better with the new correlation curve given by R. S. Krishnan and K. Krishnan (1964). However it has been pointed out that from a comparative study of the new infrared spectra of hydrazonium sulphate and lithium ammonium sulphate that the absorption band at 969 cm.−1 is due to N-N stretching vibration and that the fairly intense band between 2050–2170 cm.−1 is due to the bending vibrations of the NH3+ group.
Resumo:
The Raman spectrum of lithium hydrazinium sulphate has been recorded both in the single crystal form and in aqueous solutions. The crystal exhibits thirty-eight Raman lines having the frequency shifts 52, 70, 104, 146, 174, 220, 260, 302, 350, 454, 470, 610, 630, 715, 977, 1094, 1115, 1132, 1177, 1191, 1260, 1444, 1493, 1577, 1630, 1670, 2205, 2484, 2553, 2655, 2734, 2848, 2894, 2939, 3028, 3132, 3290 and 3330 cm.−1 The aqueous solution gave rise to six Raman lines at 452, 980, 1050–1200, 1260, 1425 and 1570 cm.−1 apart from a maximum at 180 cm.−1 in the ‘wing’ accompanying the Rayleigh line. The observed Raman lines have been assigned as arising from the vibrations of the SO4 ion, N2H5+ ion, Li-O4 group, hydrogen bond and the lattice. The influence of the hydrogen bond on the N-H stretching vibrations has been pointed out. The various features of the observed spectrum strongly support the hypothesis that the NH3 group in the crystal is rotating around the N-N axis at room temperature.
Resumo:
The Raman spectrum of guanidinium aluminium sulphate hexahydrate also known as ‘GASH’ which is a ferro-electric crystal and has strong hydrogen bonds has been recorded. 38 Raman lines have been identified in the spectra of GASH. The O-H stretching mode is found to be very much influenced by the hydrogen bond and they appear over a widely extended region from 2240–3600 cm.−1 It can therefore be concluded that all the O-H bonds are hydrogen bonded and some of them are quite strong. The Raman lines due to the N-H vibrations appear with the normal frequency shifts indicating thereby that N-H bonds are not hydrogen bonded. These conclusions are fully supported by the results obtained from the X-ray crystal structure analysis of GASH. The principal vibrations of the Al-(OH2)6 groups have also been identified.
Resumo:
1. The polarographic behaviour of glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine complexes of lead has been studied at various pH values and in presence of (1) NaOH, (2) Na2CO3 and (3) NH4 NO3+NH4OH. All the polarographic waves have been found to be reversible. 2. Experiments conducted on the effect of variation of pH, i.e., 7
Resumo:
Raman spectrum of a single crystal of lanthanum ethyl sulphate has been recorded for the first time using the λ 2537 radiation Forty-one lines have been identified out of which eight belong to the lattice oscillations, seven to the internal vibrations of the water molecule and the remaining twenty-six to the internal vibrations of the ethyl sulphate group. The Raman spectrum of ethyl sulphate (liquid) has also been recorded using the λ 4358 excitation and is compared with the spectrum of lanthanum ethyl sulphate. Thirty Raman lines could be identified in the spectrum of ethyl sulphate, of which fourteen are recorded for the first time. Probable assignments of the observed frequencies are also given. The sulphate group is found to have O-SO3 structure in lanthanum ethyl sulphate, while it has a co-ordination {Mathematical expression} in ethyl sulphate.
Resumo:
Polarisation characters of the Raman lines of calcium fluoride (fluorspar) and potassium aluminium sulphate (alum) were investigated under the following conditions. Unpolarised light was incident normally on a face of the crystal making an angle 22.5° with a cubic face and the light scattered transversely along a cubic axis was analysed by a double image prism kept with its principal axes inclined at 45° to the vertical. Under these conditions the depolarisation factors of the Raman lines belonging to the totally symmetric (A), the doubly degenerate (E) and the triply degenerate (F) modes should be respectively =1, >1 and <1. The characteristic Raman line of CaF2 at 322 cm-1 exhibited a depolarisation value less than 1, showing thereby that the corresponding mode is a triply degenerate one (F). The Raman lines observed in the spectrum of K-alum were also classified and the results were compared with those given by previous investigators using standard crystal orientations.
Resumo:
ALTHOUGH titanium is determined colorimetrically in aqueous sulphuric acid medium in presence of excess of hydrogen peroxide, the nature of the colour-forming species is not known definitely. Schwarz1 suggested that the colour was due to the peroxo-disulphato titanate anion [O 2Ti(SO4)2]2-. On the other hand, Jahr2 and later Gastinger3 considered that the colour of the compound was due to the peroxy titanyl cation [TiO2 aq.] 2+, and suggested the following equilibrium in solution: Schaeppi and Treadwell4 attributed the colour bo O2TiSO4 or [O2Ti(SO4)2]2-, whereas Babko and Volkova5 represented the coloured complex ion as [Ti(H 2O2)]4+. Mori, Shibata, Kyuno and Ito 6 regarded the coloured species as [TiO2 aq.]2+ or [Ti(OH)2 (H2O)(H2O2)] 2+, assuming the co-ordination number of titanium to be four. Thus, a variety of constitutions has been proposed to explain the colour-forming species of the titanium complex, based on the investigations carried out in dilute sulphuric acid medium, but the complex has not been isolated so far.
Resumo:
Matthias, Miller and Remeika1 were the first to observe that triglycine sulphate becomes ferroelectric below 47°C. The dielectric properties and the specific heat of this crystal have been studied through the transition temperature by Hoshino, Mitsui, Jona and Pepinsky2. The observed variation of the dielectric properties as a function of temperature in this crystal shows that the transition is of second order. Hoshino et al. concluded that the anomaly is not of the λ-type, since their specific heat - temperature curve showed only a hump. It was decided to investigate the thermal expansion of this crystal as it might throw some light on the nature of the transition.
Resumo:
Lead acid batteries are used in hybrid vehicles and telecommunications power supply. For reliable operation of these systems, an indication of state of charge of battery is essential. To determine the state of charge of battery, current integration method combined with open circuit voltage, is being implemented. To reduce the error in the current integration method the dependence of available capacity as a function of discharge current is determined. The current integration method is modified to incorporate this factor. The experimental setup built to obtain the discharge characterstics of the battery is presented.
Resumo:
Antiferroelectric lead zirconate thin films were deposited using KrF (248 nm) excimer laser ablation technique. Utilization of antiferroelectric materials is proposed in high charge storage capacitors and microelectromechanical (MEMs) devices. The antiferroelectric nature of lead zirconate thin films was confirmed by the presence of double hysteresis behavior in polarization versus applied field response. By controlling the processing parameters, two types of microstructures evolved, namely columnar (or in-situ) and multi-grained (or ex-situ) in PZ thin films. The dielectric and electrical properties of the lead zirconate thin films were studied with respect to the processing parameters. Analysis on charge transport mechanism, using space charge limited conduction phenomenon, showed the presence of both shallow and deep trap sites in the PZ thin films. The estimated shallow trap energies were 0.448 and 0.491 eV for in-situ and ex-situ films, with respective concentrations of approximate to 7.9 x 10(18)/cc and approximate to 2.97 x 10(18)/cc. The deep trap energies with concentrations were 1.83 eV with 1.4 x 10(16)/cc for ex-situ and 1.76 eV with 3.8 x 10(16)/cc for in-situ PZ thin films, respectively. These activation energies were found to be consistent with the analysis from Arrhenius plots of de current densities. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
X‐ray absorption near‐edge spectroscopy studies show that Pb in superconducting Tl0.5Pb0.5CaSr2Cu2O7+δ is essentially in the 4+ state while it is in the 2+ state in Pb2Sr2Ca1−xLnxCu3O8+δ.