900 resultados para Trapped Microscopic Particles
Resumo:
Inflammatory papillary hyperplasia of the palate (IPHP) is a tissue-reactive overgrowth characterized by hyperemic mucosa with nodular or papillary appearance in the palate. The exact pathogenesis is still unclear. In this study, the presence of Candida albicans in the epithelial lining was evaluated using the indirect immunofluorescence staining technique. Strongly stained C albicans was observed only in the lesions of the IPHP group. Therefore, the detection of C albicans in almost all samples from IPHP tissue enabled a suggestion as to the microbial etiology of the disease, since the use of dental prostheses was reported. Int J Prosthodont 2011;24:235-237
Resumo:
This study evaluated the biomechanical and microscopic response of previously grafted bone to titanium implants. The lower incisors of 16 rabbits were surgically extracted, and bilateral perforations communicating with the remaining sockets were created distally. A socket/perforation defect on each mandible was chosen at random to be immediately filled with a xenogenic graft, whereas the contralateral perforation was left to heal naturally and served as a paired control. After 60 days, titanium implants were installed in the previously operated areas. After periods of 2 and 6 months, the animals were killed, and the force necessary to retrieve implants as well as the bone-implant contact (BIC) and bone mass (BM) were quantified and statistically compared by 2-way analysis of variance and Tukey`s test (alpha = .05). No significant differences in removal torque were observed, either by time or by treatment condition. Differences in BIC and BM between experimental and control groups were not statistically significant through the intervals studied (P < .05). The presence of a xenogenic graft did not influence the microscopic tissue response to titanium implants or fixation into newly formed or mature bone.
Resumo:
It has been known since the early sixties that nickel sulfide inclusions cause spontaneous fracture of toughened (thermally tempered) glass, but despite the considerable amount of work done on this problem in the last four decades, failures still occur in the field with regularity. In this study we have classified (by viewing through a 60x optical microscope) inclusions into two groups, which are classic and atypical nickel sulfides. The classics look like the nickel sulfide inclusions found at the initiation-of-fracture of windows that have broken spontaneously. We have compared the structure and composition of the atypical inclusions with the structure and composition of the classics. All of the classic and atypical nickel sulfide inclusions studied in this work were found to have a composition in the range of Ni52S48 to Ni48S52. Inclusions on the nickel rich side of stoichiometric NiS were found to be two-phase assemblies, and inclusions on the sulphur rich side of NiS were single phase. It had been proposed that the atypicals were passive, and of a different composition to the classics. However, we found that the difference between passive and dangerous nickel sulfide inclusions was not a difference in composition but rather a difference in the type of material in the internal pore space. The passive's had carbon char in their internal pore space, whereas the pore space of dangerous inclusions contained Na2O. The presence of Na2O and carbon char with the inclusions indicates that the formation of the inclusions results from a reaction of a nickel-rich phase with sodium sulphate and carbon. (C) 2001 Kluwer Academic Publishers.
Resumo:
The initial step in viral infection is the attachment of the virus to the host cell via an interaction with its receptor. We have previously shown that a receptor for human papillomavirus is the alpha6 integrin. The alpha6 integrin is involved in the attachment of epithelial cells with the basement membrane, but recent evidence suggests that ligation of many integrins results in intracellular signaling events that influence cell proliferation. sere we present evidence that exposure of A431 human epithelial cells to human papillomavirus type 6b L1 virus-like particles (VLPs) results in a dose-dependent increase in cell proliferation, as measured by bromodeoxyuridine incorporation. This proliferation is Lost if VLPs are first denatured or incubated with a monoclonal antibody against L1 protein. The MEK1 inhibitor PB98059 inhibits the VLP-mediated increase in fell proliferation, suggesting involvement of the Ras-MAP kinase pathway, Indeed, VLP binding results in rapid phosphorylation of the beta4 integrin upon tyrosine residues and subsequent recruitment of the adapter protein She to beta4, Within 30 min, the activation of Ras, Raf, and Erk2 was observed. Finally, the upregulation of c-myc mRNA was observed at 60 min, These data indicate that human papillomavirus type 6b is able to signal cells via the Ras-MAP kinase pathway to induce cell proliferation. We hypothesize that such a mechanism would allow papillomaviruses to infect hosts more successfully by increasing the potential pool of cells they are able to infect via the initiation of proliferation in resting keratinocyte stem and suprabasal cells.
Resumo:
We report on a proof of principle demonstration of an optically driven micromachine element. Optical angular momentum is transferred from a circularly polarized laser beam to a birefringent particle confined in an optical tweezers trap. The optical torque causes the particle to spin at up to 350 Hz, and this torque is harnessed to drive an optically trapped microfabricated structure. We describe a photolithographic method for producing the microstructures and show how a light driven motor could be used in a micromachine system. (C) 2001 American Institute of Physics.
Resumo:
Injection of particulate hepatitis B virus surface antigen (HBsAg) in mice leads to the induction of a HBsAg-specific class-I-restricted cytotoxic T lymphocyte (CTL) response. It is proposed that any protein internal to HBsAg will also be able to elicit a specific CTL response. In this study, several carboxy-terminal truncations of hepatitis C virus (HCV) core protein were fused to varying lengths of amino-terminal truncated large hepatitis delta antigen (L-HDAg). These constructs were analysed for their ability to be expressed and the particles secreted in the presence of HBsAg after transfection into HuH-7 cells. The secretion efficiency of the various HCV core-HDAg chimeric proteins was generally poor. Constructs containing full length HDAg appeared to be more stable than truncated versions and the length of the inserted protein was restricted to around 40 amino acids. Thus, the use of L-HDAg as a chimera to package foreign proteins is limited. Consequently, a polyepitope (polytope) containing a B-cell epitope from human papillomavirus (HPV 16) and multiple T-cell epitopes from the HCV polyprotein was used to create the construct, L-HDAg-polyB. This chimeric protein was shown to be reliant on the co-expression of HBsAg for secretion into the cell culture fluid and was secreted more efficiently than the previous HCV core-HDAg constructs. These L-HDAg-polyB virus-like particles (VLPs) had a buoyant density of similar to 1.2 g/cm(3) in caesium chloride and similar to 1.15 g/cm(3) in sucrose. The VLPs were also immunoprecipitated using an anti-HBs but not an anti-HD antibody. Thus, these recombinant VLPs have similar biophysical properties to L-HDAg VLPs.
Resumo:
The small envelope protein of hepatitis B virus (HBsAg-S) can self-assemble into highly organized virus like particles (VLPs) and induce an effective immune response. In this study, a restriction enzyme site was engineered into the cDNA of HBsAg-S at a position corresponding to the exposed site within the hydrophilic a determinant region (amino acid [aa] 127-128) to create a novel HBsAg vaccine vector allowing surface orientation of the inserted sequence. We inserted sequences of various lengths from hypervariable region 1 (HVR1) of the hepatitis C virus (HCV) E2 protein containing immunodominant epitopes and demonstrated secretion of the recombinant HBsAg VLPs from transfected mammalian cells. A number of different recombinant proteins were synthesized, and HBsAg VLPs containing inserts up to 36 aa were secreted with an efficiency similar to that of wild-type HBsAg. The HVR1 region exposed on the particles retained an antigenic structure similar to that recognized immunologically during natural infection. VLPs containing epitopes from either HCV-1a or -1b strains were produced that induced strain-specific antibody responses in immunized mice. Injection of a combination of these VLPs induced antibodies against both HVR1 epitopes that resulted in higher titers than were achieved by vaccination with the individual VLPs, suggesting a synergistic effect. This may lead to the development of recombinant particles which are able to induce a broad anti-HCV immune response against the HCV quasispecies or other quasispecies-like infectious agents.
Resumo:
The Dubinin-Radushkevich (DR) equation is widely used for description of adsorption in microporous materials, especially those of a carbonaceous origin. The equation has a semi-empirical origin and is based on the assumptions of a change in the potential energy between the gas and adsorbed phases and a characteristic energy of a given solid. This equation yields a macroscopic behaviour of adsorption loading for a given pressure. In this paper, we apply a theory developed in our group to investigate the underlying mechanism of adsorption as an alternative to the macroscopic description using the DR equation. Using this approach, we are able to establish a detailed picture of the adsorption in the whole range of the micropore system. This is different from the DR equation, which provides an overall description of the process. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Aluminium alloys that contain Si, Mg, Fe, Mn and/or Cu usually contain one or more types of intermetallic phases that are not readily distinguishable in the microstructure by conventional microscopy methods. It has thus been a challenge to develop a method that will unambiguously identify them. A practical approach has been developed that is based on an inherent linear relationship revealed for the overall distribution of any two elements in a precipitate/matrix geometry and the first-order approximation of electron probe microanalysis (EPMA) results. Application of this approach to a direct chill cast 6082 alloy is demonstrated, and its major limitations are discussed.
Resumo:
Large (>1600 mum), ingestively masticated particles of bermuda grass (Cynodon dactylon L. Pers.) leaf and stem labelled with Yb-169 and Ce-144 respectively were inserted into the rumen digesta raft of heifers grazing bermuda grass. The concentration of markers in digesta sampled from the raft and ventral rumen were monitored at regular intervals over approximately 144 h. The data from the two sampling sites were simultaneously fitted to two pool (raft and ventral rumen-reticulum) models with either reversible or sequential flow between the two pools. The sequential flow model fitted the data equally as well as the reversible flow model but the reversible flow model was used because of its greater application. The reversible flow model, hereafter called the raft model, had the following features: a relatively slow age-dependent transfer rate from the raft (means for a gamma 2 distributed rate parameter for leaf 0.0740 v. stem 0.0478 h(-1)), a very slow first order reversible flow from the ventral rumen to the raft (mean for leaf and stem 0.010 h(-1)) and a very rapid first order exit from the ventral rumen (mean of leaf and stem 0.44 h(-1)). The raft was calculated to occupy approximately 0.82 total rumen DM of the raft and ventral rumen pools. Fitting a sequential two pool model or a single exponential model individually to values from each of the two sampling sites yielded similar parameter values for both sites and faster rate parameters for leaf as compared with stem, in agreement with the raft model. These results were interpreted as indicating that the raft forms a large relatively inert pool within the rumen. Particles generated within the raft have difficulty escaping but once into the ventral rumen pool they escape quickly with a low probability of return to the raft. It was concluded that the raft model gave a good interpretation of the data and emphasized escape from and movement within the raft as important components of the residence time of leaf and stem particles within the rumen digesta of cattle.
A high efficient and consistent method for harvesting large volumes of high-titre lentiviral vectors
Resumo:
Lentiviral vectors pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) are emerging as the vectors of choice for in vitro and in vivo gene therapy studies. However, the current method for harvesting lentivectors relies upon ultracentrifugation at 50 000 g for 2 h. At this ultra-high speed, rotors currently in use generally have small volume capacity. Therefore, preparations of large volumes of high-titre vectors are time-consuming and laborious to perform. In the present study, viral vector supernatant harvests from vector-producing cells (VPCs) were pre-treated with various amounts of poly-L-lysine (PLL) and concentrated by low speed centrifugation. Optimal conditions were established when 0.005% of PLL (w/v) was added to vector supernatant harvests, followed by incubation for 30 min and centrifugation at 10 000 g for 2 h at 4 degreesC. Direct comparison with ultracentrifugation demonstrated that the new method consistently produced larger volumes (6 ml) of high-titre viral vector at 1 x 10(8) transduction unit (TU)/ml (from about 3000 ml of supernatant) in one round of concentration. Electron microscopic analysis showed that PLL/viral vector formed complexes, which probably facilitated easy precipitation at low-speed concentration (10 000 g), a speed which does not usually precipitate viral particles efficiently. Transfection of several cell lines in vitro and transduction in vivo in the liver with the lentivector/PLL complexes demonstrated efficient gene transfer without any significant signs of toxicity. These results suggest that the new method provides a convenient means for harvesting large volumes of high-titre lentivectors, facilitate gene therapy experiments in large animal or human gene therapy trials, in which large amounts of lentiviral vectors are a prerequisite.
Resumo:
A theory is developed for calculating the entrapment of particles by a windbreak, with four results. (1) The fraction of particles in the oncoming flow which pass through the windbreak, or transmittance of the windbreak for particles (sigma), is related to the optical porosity (tau). The very simple approximation sigma=tau works well for most applications involving the interception of spray droplets by windbreaks. Results from a field experiment agree with the theoretical predictions. (2) A new equation for the bulk drag coefficient of a windbreak is tested against numerical, wind tunnel and field experiments. This enables the bleed velocity for the flow through the windbreak to be predicted in terms of the screen pressure coefficient (k) of the barrier. (3) The relationship between k and tau is different for a vegetative barrier than for a screen across a confined duct, implying a lower Fc for given tau. (4) The total deposition of particles to a windbreak is determined by a trade-off between particle absorption and throughflow, implying an optimum value of tau for maximum total deposition. For particles larger than 30 mum and vegetation elements smaller than 30 mm, this occurs near tau = 0.2. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The particle-based Lattice Solid Model (LSM) was developed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes (MORA and PLACE, 1994; PLACE and MORA, 1999). A new modular and flexible LSM approach has been developed that allows different microphysics to be easily included in or removed from the model. The approach provides a virtual laboratory where numerical experiments can easily be set up and all measurable quantities visualised. The proposed approach provides a means to simulate complex phenomena such as fracturing or localisation processes, and enables the effect of different micro-physics on macroscopic behaviour to be studied. The initial 2-D model is extended to allow three-dimensional simulations to be performed and particles of different sizes to be specified. Numerical bi-axial compression experiments under different confining pressure are used to calibrate the model. By tuning the different microscopic parameters (such as coefficient of friction, microscopic strength and distribution of grain sizes), the macroscopic strength of the material and can be adjusted to be in agreement with laboratory experiments, and the orientation of fractures is consistent with the theoretical value predicted based on Mohr-Coulomb diagram. Simulations indicate that 3-D numerical models have different macroscopic properties than in 2-D and, hence, the model must be recalibrated for 3-D simulations. These numerical experiments illustrate that the new approach is capable of simulating typical rock fracture behaviour. The new model provides a basis to investigate nucleation, rupture and slip pulse propagation in complex fault zones without the previous model limitations of a regular low-level surface geometry and being restricted to two-dimensions.