253 resultados para Transposon Tn5
Resumo:
Under conditions of iron limitation Pseudomonas fluorescens ATCC 17400 produces two siderophores, pyoverdine, and a second siderophore quinolobactin, which itself results from the hydrolysis of the unstable molecule 8-hydroxy-4-methoxy-2-quinoline thiocarboxylic acid (thioquinolobactin). Pseudomonas fluorescens ATCC 17400 also displays a strong in vitro antagonism against the Oomycete Pythium, which is repressed by iron, suggesting the involvement of a siderophore(s). While a pyoverdine-negative mutant retains most of its antagonism, a thioquinolobactin-negative mutant only slowed-down Pythium growth, and a double pyoverdine-, thioquinolobactin-negative mutant, which does not produce any siderophore, totally lost its antagonism against Pythium. The siderophore thioquinolobactin could be purified and identified from spent medium and showed anti-Pythium activity, but it was quickly hydrolysed to quinolobactin, which we showed has no antimicrobial activity. Analysis of antagonism-affected transposon mutants revealed that genes involved in haem biosynthesis and sulfur assimilation are important for the production of thioquinolobactin and the expression of antagonism.
Resumo:
Some families of mammalian interspersed repetitive DNA, such as the Alu SINE sequence, appear to have evolved by the serial replacement of one active sequence with another, consistent with there being a single source of transposition: the "master gene." Alternative models, in which multiple source sequences are simultaneously active, have been called "transposon models." Transposon models differ in the proportion of elements that are active and in whether inactivation occurs at the moment of transposition or later. Here we examine the predictions of various types of transposon model regarding the patterns of sequence variation expected at an equilibrium between transposition, inactivation, and deletion. Under the master gene model, all bifurcations in the true tree of elements occur in a single lineage. We show that this property will also hold approximately for transposon models in which most elements are inactive and where at least some of the inactivation events occur after transposition. Such tree shapes are therefore not conclusive evidence for a single source of transposition.
Resumo:
Understanding the molecular basis of acid tolerance in the food-borne pathogen Listeria monocytogenes is important as this property contributes to survival in the food-chain and enhances survival within infected hosts. The aim of this study was to identify genes contributing to acid tolerance in L. monocytogenes using transposon mutagenesis and subsequently to elucidate the physiological role of these genes in acid tolerance. One mutant harboring a Tn917 insertion in the thiT gene (formerly lmo1429), which encodes a thiamine (vitamin B1) uptake system, was found to be highly sensitive to acid. The acid-sensitive phenotype associated with loss of this gene was confirmed with an independently isolated mutant, from which the thiT gene was deleted (ΔthiT). Cells of both wild-type and ΔthiT mutant that were thiamine depleted were found to be significantly more acid sensitive than control cultures. Thiamine-depleted cultures failed to produce significant concentrations of acetoin, consistent with the known thiamine dependence of acetolactate synthase, an enzyme required for acetoin synthesis from pyruvate. As acetoin synthesis is a proton-consuming process, we suggest that the acid sensitivity observed in thiamine-depleted cultures may be owing to an inability to produce acetoin.
Resumo:
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.
Resumo:
Food security depends on enhancing production and reducing loss to pests and pathogens. A promising alternative to agrochemicals is the use of plant growth-promoting rhizobacteria (PGPR), which are commonly associated with many, if not all, plant species. However, exploiting the benefits of PGPRs requires knowledge of bacterial function and an in-depth understanding of plant-bacteria associations. Motility is important for colonization efficiency and microbial fitness in the plant environment, but the mechanisms employed by bacteria on and around plants are not well understood. We describe and investigate an atypical mode of motility in Pseudomonas fluorescens SBW25 that was revealed only after flagellum production was eliminated by deletion of the master regulator fleQ. Our results suggest that this ‘spidery spreading’ is a type of surface motility. Transposon mutagenesis of SBW25ΔfleQ (SBW25Q) produced mutants, defective in viscosin production, and surface spreading was also abolished. Genetic analysis indicated growth-dependency, production of viscosin, and several potential regulatory and secretory systems involved in the spidery spreading phenotype. Moreover, viscosin both increases efficiency of surface spreading over the plant root and protects germinating seedlings in soil infected with the plant pathogen Pythium. Thus, viscosin could be a useful target for biotechnological development of plant growth promotion agents.
Resumo:
Horizontal gene transfer is an important driver of bacterial evolution, but genetic exchange in the core genome of clonal species, including the major pathogen Staphylococcus aureus, is incompletely understood. Here we reveal widespread homologous recombination in S. aureus at the species level, in contrast to its near-complete absence between closely related strains. We discover a patchwork of hotspots and coldspots at fine scales falling against a backdrop of broad-scale trends in rate variation. Over megabases, homoplasy rates fluctuate 1.9-fold, peaking towards the origin-of-replication. Over kilobases, we find core recombination hotspots of up to 2.5-fold enrichment situated near fault lines in the genome associated with mobile elements. The strongest hotspots include regions flanking conjugative transposon ICE6013, the staphylococcal cassette chromosome (SCC) and genomic island νSaα. Mobile element-driven core genome transfer represents an opportunity for adaptation and challenges our understanding of the recombination landscape in predominantly clonal pathogens, with important implications for genotype–phenotype mapping.
Resumo:
Dispersal provides the opportunity to escape harm and colonize new patches, enabling populations to expand and persist. However, the benefits of dispersal associated with escaping harm will be dependent on the structure of the environment and the likelihood of escape. Here, we empirically investigate how the spatial distribution of a parasite influences the evolution of host dispersal. Bacteriophages are a strong and common threat for bacteria in natural environments and offer a good system with which to explore parasite-mediated selection on host dispersal. We used two transposon mutants of the opportunistic bacteria, Pseudomonas aeruginosa, which varied in their motility (a disperser and a nondisperser), and the lytic bacteriophage ФKZ. The phage was distributed either in the central point of colony inoculation only, thus offering an escape route for the dispersing bacteria; or, present throughout the agar, where benefits of dispersal might be lost. Surprisingly, we found dispersal to be equally advantageous under both phage conditions relative to when phages were absent. A general explanation is that dispersal decreased the spatial structuring of host population, reducing opportunities for parasite transmission, but other more idiosyncratic mechanisms may also have contributed. This study highlights the crucial role the parasites can play on the evolution of dispersal and, more specifically, that bacteriophages, which are ubiquitous, are likely to select for bacterial motility.
Resumo:
In Drosophila, telomere retrotransposons counterbalance the loss of telomeric DNA. The exceptional mechanism of telomere recovery characterized in Drosophila has not been found in lower dipterans (Nematocera). However, a retroelement resembling a telomere transposon and termed ""RaTART"" has been described in the nematoceran Rhynchosciara americana. In this work, DNA and protein sequence analyses, DNA cloning, and chromosomal localization of probes obtained either by PCR or by screening a genomic library were carried out in order to examine additional features of this retroelement. The analyses performed raise the possibility that RaTART represents a genomic clone composed of distinct repetitive elements, one of which is likely to be responsible for its apparent enrichment at chromosome ends. RaTART sequence in addition allowed to assess a novel subtelomeric region of R. americana chromosomes that was analyzed in this work after subcloning a DNA fragment from a phage insert. It contains a complex repeat that is located in the vicinity of simple and complex tandem repeats characterized previously. Quantification data suggest that the copy number of the repeat is significantly lower than that observed for the ribosomal DNA in the salivary gland of R. americana. A short insertion of the RaTART was identified in the cloned segment, which hybridized preferentially to subtelomeres. Like RaTART, it displays truncated sequences related to distinct retrotransposons, one of which has a conceptual translation product with significant identity with an endonuclease from a lepidopteran retrotransposon. The composite structure of this DNA stretch probably reflects mobile element activity in the subtelomeric region analyzed in this work.
Resumo:
Two mariner-like elements, Ramar1 and Ramar2, are described in the genome of Rhynchosciara americana, whose nucleotide consensus sequences were derived from multiple defective copies containing deletions, frame shifts and stop codons. Ramar1 contains several conserved amino acid blocks which were identified, including a specific D,D(34)D signature motif. Ramar2 is a defective mariner-like element, which contains a deletion overlapping in most of the internal region of the transposase ORF while its extremities remain intact. Predicted transposase sequences demonstrated that Ramar1 and Ramar2 phylogenetically present high identity to mariner-like elements of mauritiana subfamily. Southern blot analysis indicated that Ramar1 is widely represented in the genome of Rhynchosciara americana. In situ hybridizations showed Ramar1 localized in several chromosome regions, mainly in pericentromeric heterochromatin and their boundaries, while Ramar2 appeared as a single band in chromosome A.
Resumo:
Free-living bacteria must respond to a wide range of temperature changes, and have developed specific mechanisms to survive in extreme environments. In this work we describe a remarkable resistance of mesophilic bacterium Caulobacter crescentus to several cycles of freezing at -80 degrees C, which was able to grow at low temperatures. Exponentially growing cells and late stationary-phase cells presented higher freezing resistance at both -20 and -80 degrees C than early stationary-phase cells. Cryotolerance was observed when log-phase cultures grown at 30 degrees C were preincubated at 5, 15 or 20 degrees C before freezing at -20 degrees C. A transposon library was screened to identify mutants sensitive to freezing at -80 degrees C and three strains presenting < 10% survival were isolated. Identification of genes disrupted in each mutant showed that they encoded an AddA family DNA helicase, a DEAD/DEAH box RNA helicase and a putative RND (resistance, nodulation, cell division) efflux system component. These strains showed longer generation times than wild-type cells when growing at 15 degrees C, with the RNA helicase mutant presenting a severe growth defect. These analyses suggest that the singular intrinsic resistance to freezing of C. crescentus is in fact a consequence of several independent traits, especially the maintenance of a proper degree of supercoiling of nucleic acids.
Resumo:
Caulobacter crescentus is a free-living alphaproteobacterium that has 11 predicted LysR-type transcriptional regulators (LTTRs). Previously, a C. crescentus mutant strain with a mini-Tn5lacZ transposon inserted into a gene encoding an LTTR was isolated; this mutant was sensitive to cadmium. In this work, a mutant strain with a deletion was obtained, and the role of this LTTR (called CztR here) was evaluated. The transcriptional start site of this gene was determined by primer extension analysis, and its promoter was cloned in front of a lacZ reporter gene. beta-Galactosidase activity assays, performed with the wild-type and mutant strains, indicated that this gene is 2-fold induced when cells enter stationary phase and that it is negatively autoregulated. Moreover, this regulator is essential for the expression of the divergent cztA gene at stationary phase, in minimal medium, and in response to zinc depletion. This gene encodes a hypothetical protein containing 10 predicted transmembrane segments, and its expression pattern suggests that it encodes a putative zinc transporter. The cztR strain was also shown to be sensitive to superoxide (generated by paraquat) and to hydrogen peroxide but not to tert-butyl hydroperoxide. The expression of katG and ahpC, but not that of the superoxide dismutase genes, was increased in the cztR mutant. A model is proposed to explain how CztR binding to the divergent regulatory regions could activate cztA expression and repress its own transcription.
Resumo:
The 157-kb conjugative plasmid pEO5 encoding alpha-haemolysin in strains of human enteropathogenic Escherichia coli (EPEC) O26 was investigated for its relationship with EHEC-haemolysin-encoding plasmids of enterohaemorrhagic E. coli (EHEC) O26 and O157 strains. Plasmid pEO5 was found to be compatible with EHEC-virulence plasmids and did not hybridize in Southern blots with plasmid pO157 from the EHEC O157:H7 strain EDL933, indicating that both plasmids were unrelated. A 9227-bp stretch of pEO5 DNA encompassing the entire alpha-hlyCABD operon was sequenced and compared for similarity to plasmid and chromosomally inherited alpha-hly determinants. The alpha-hly determinant of pEO5 (7252 bp) and its upstream region was most similar to corresponding sequences of the murine E. coli alpha-hly plasmid pHly152, in particular, the structural alpha-hlyCABD genes (99.2% identity) and the regulatory hlyR regions (98.8% identity). pEO5 and alpha-hly plasmids of EPEC O26 strains from humans and cattle were very similar for the regions encompassing the structural alpha-hlyCABD genes. The major difference found between the hly regions of pHly152 and pEO5 is caused by the insertion of an IS2 element upstream of the hlyC gene in pHly152. The presence of transposon-like structures at both ends of the alpha-hly sequence indicates that this pEO5 virulence factor was probably acquired by horizontal gene transfer.
Resumo:
A Caulobacter crescentus rho:Tn5 mutant strain presenting a partially functional transcription termination factor Rho is highly sensitive to hydrogen peroxide in both exponential and stationary phases. The mutant was shown to be permanently under oxidative stress, based on fluorophore oxidation, and also to be sensitive to tert-butyl hydroperoxide and paraquat. However, the results showed that the activities of superoxide dismutases CuZnSOD and FeSOD and the alkylhydroperoxide reductase ahpC mRNA levels in the rho mutant were comparable to the wild-type control in the exponential and stationary phases. In contrast, the KatG catalase activity of the rho mutant strain was drastically decreased and did not show the expected increase in the stationary phase compared with the exponential phase. Transcription of the katG gene was increased in the rho mutant and the levels of the immunoreactive KatG protein do not differ considerably compared with the wild type in the stationary phase, suggesting that KatG activity is affected in a translational or a post-translational step.
Resumo:
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce`s disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.
Resumo:
Aeromonas salmonicida AS03, a potential fish pathogen, was isolated from Atlantic salmon, Salmo salar, in 2003. This strain was found to be resistant to ≥1000 mM HgCl2 and ≥32 mM phenylmercuric acetate as well as multiple antimicrobials. Mercury (Hg) and antibiotic resistance genes are often located on the same mobile genetic elements, so the genetic determinants of both resistances and the possibility of horizontal gene transfer were examined. Specific PCR primers were used to amplify and sequence distinctive regions of the mer operon. A. salmonicida AS03 was found to have a pDU1358-like broad-spectrum mer operon, containing merB as well as merA, merD, merP, merR and merT, most similar to Klebsiella pneumonaie plasmid pRMH760. To our knowledge, the mer operon has never before been documented in Aeromonas spp. PCR and gene sequencing were used to identify class 1 integron associated antibiotic resistance determinants and the Tet A tetracycline resistance gene. The transposase and resolvase genes of Tn1696 were identified through PCR and sequencing with Tn21 specific PCR primers. We provide phenotypic and genotypic evidence that the mer operon, the aforementioned antibiotic resistances, and the Tn1696 transposition module are located on a single plasmid or conjugative transposon that can be transferred to E. coli DH5α through conjugation in the presence of low level Hg and absence of any antibiotic selective pressure. Additionally, the presence of low-level Hg or chloramphenicol in the mating media was found to stimulate conjugation, significantly increasing the transfer frequency of conjugation above the transfer frequency measured with mating media lacking both antibiotics and Hg. This research demonstrates that mercury indirectly selects for the dissemination of the antibiotic resistance genes of A. salmonicida AS03.