996 resultados para Transient ice formation
Resumo:
Dual beam thermal lens tecbnique is successfully employed for the determination of absolute Fluorescence quantum yield of rhodamine 6G lnser dye in different solvents. A 532 nm radiation from a Q-switched Nd:YAG laser was used for the excitation purpose. The fluorescence quantum yield values are found to be strongly influenced by environmental effects. It has been observed that fluorescence yield is greater for rhodamine 6G in ethylene glycol system than in water or in methanol. Our results also indicate that parameters like concentration of the dye solution, aggregate formation and excited state absorption affect the absolute values of fluorescence yield significantly.
Resumo:
Mega-scale glacial lineations (MSGLs) are longitudinally aligned corrugations (ridge-groove structures 6-100 km long) in sediment produced subglacially. They are indicators of fast flow and a common signature of ice-stream beds. We develop a qualitative theory that accounts for their formation, and use numerical modelling, and observations of ice-stream beds to provide supporting evidence. Ice in contact with a rough (scale of 10-10(3) m) bedrock surface will mimic the form of the bed. Because of flow acceleration and convergence in ice-stream onset zones, the ice-base roughness elements experience transverse strain, transforming them from irregular bumps into longitudinally aligned keels of ice protruding downwards. Where such keels slide across a soft sedimentary bed, they plough through the sediments, carving elongate grooves, and deforming material up into intervening ridges. This explains MSGLs and has important implications for ice-stream mechanics. Groove ploughing provides the means to acquire new lubricating sediment and to transport large volumes of it downstream. Keels may provide basal drag in the force budget of ice streams, thereby playing a role in flow regulation and stability We speculate that groove ploughing permits significant ice-stream widening, thus facilitating high-magnitude ice discharge.
Resumo:
The beds of active ice streams in Greenland and Antarctica are largely inaccessible, hindering a full understanding of the processes that initiate, sustain and inhibit fast ice flow in ice sheets. Detailed mapping of the glacial geomorphology of palaeo-ice stream tracks is, therefore, a valuable tool for exploring the basal processes that control their behaviour. In this paper we present a map that shows detailed glacial geomorphology from a part of the Dubawnt Lake Palaeo-Ice Stream bed on the north-western Canadian Shield (Northwest Territories), which operated at the end of the last glacial cycle. The map (centred on 63 degrees 55 '' 42'N, 102 degrees 29 '' 11'W, approximate scale 1:90,000) was compiled from digital Landsat Enhanced Thematic Mapper Plus satellite imagery and digital and hard-copy stereo-aerial photographs. The ice stream bed is dominated by parallel mega-scale glacial lineations (MGSL), whose lengths exceed several kilometres but the map also reveals that they have, in places, been superimposed with transverse ridges known as ribbed moraines. The ribbed moraines lie on top of the MSGL and appear to have segmented the individual lineaments. This indicates that formation of the ribbed moraines post-date the formation of the MSGL. The presence of ribbed moraine in the onset zone of another palaeo-ice stream has been linked to oscillations between cold and warm-based ice and/or a patchwork of cold-based areas which led to acceleration and deceleration of ice velocity. Our hypothesis is that the ribbed moraines on the Dubawnt Lake Ice Stream bed are a manifestation of the process that led to ice stream shut-down and may be associated with the process of basal freeze-on. The precise formation of ribbed moraines, however, remains open to debate and field observation of their structure will provide valuable data for formal testing of models of their formation.
Resumo:
[ 1] The local heat content and formation rate of the cold intermediate layer (CIL) in the Gulf of Saint Lawrence are examined using a combination of new in situ wintertime observations and a three-dimensional numerical model. The field observations consist of five moorings located throughout the gulf over the period of November 2002 to June 2003. The observations demonstrate a substantially deeper surface mixed layer in the central and northeast gulf than in regions downstream of the buoyant surface outflow from the Saint Lawrence Estuary. The mixed-layer depth in the estuary remains shallow (< 60 m) throughout winter, with the arrival of a layer of near-freezing waters between 40 and 100 m depth in April. An eddy-permitting ice-ocean model with realistic forcing is used to hindcast the period of observation. The model simulates well the seasonal evolution of mixed-layer depth and CIL heat content. Although the greatest heat losses occur in the northeast, the most significant change in CIL heat content over winter occurs in the Anticosti Trough. The observed renewal of CIL in the estuary in spring is captured by the model. The simulation highlights the role of the northwest gulf, and in particular, the separation of the Gaspe Current, in controlling the exchange of CIL between the estuary and the gulf. In order to isolate the effects of inflow through the Strait of Belle Isle on the CIL heat content, we examine a sensitivity experiment in which the strait is closed. This simulation shows that the inflow has a less important effect on the CIL than was suggested by previous studies.
Resumo:
The Cassini flyby of Jupiter occurred at a time near solar maximum. Consequently, the pre-Jupiter data set reveals clear and numerous transient perturbations to the Parker Spiral solar wind structure. Limited plasma data are available at Cassini for this period due to pointing restrictions imposed on the instrument. This renders the identification of the nature of such structures ambiguous, as determinations based on the magnetic field data alone are unreliable. However, a fortuitous alignment of the planets during this encounter allowed us to trace these structures back to those observed previously by the Wind spacecraft near the Earth. Of the phenomena that we are satisfactorily able to trace back to their manifestation at 1 AU, two are identified as being due to interplanetary coronal mass ejections. One event at Cassini is shown to be a merged interaction region, which is formed from the compression of a magnetic cloud by two anomalously fast solar wind streams. The flux-rope structure associated with this magnetic cloud is not as apparent at Cassini and has most likely been compressed and deformed. Confirmation of the validity of the ballistic projections used here is provided by results obtained from a one-dimensional magnetohydrodynamic projection of solar wind parameters measured upstream near the Earth. It is found that when the Earth and Cassini are within a few tens of degrees in heliospheric longitude, the results of this one-dimensional model predict the actual conditions measured at 5 AU to an impressive degree. Finally, the validity of the use of such one-dimensional projections in obtaining quasi-solar wind parameters at the outer planets is discussed.
Resumo:
One of the largest uncertainties in quantifying the impact of aviation on climate concerns the formation and spreading of persistent contrails. The inclusion of a cloud scheme that allows for ice supersaturation into the integrated forecast system (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) can be a useful tool to help reduce these uncertainties. This study evaluates the quality of the ECMWF forecasts with respect to ice super saturation in the upper troposphere by comparing them to visual observations of persistent contrails and radiosonde measurements of ice supersaturation over England. The performance of 1- to 3-day forecasts is compared including also the vertical accuracy of the supersaturation forecasts. It is found that the operational forecasts from the ECMWF are able to predict cold ice supersaturated regions very well. For the best cases Peirce skill scores of 0.7 are obtained, with hit rates at times exceeding 80% and false-alarm rates below 20%. Results are very similar for comparisons with visual observations and radiosonde measurements, the latter providing the better statistical significance.
Resumo:
The Buordakh Massif of the Cherskiy Range of sub-arctic north east Siberia, Russia has a cold continental climate and supports over 80 glaciers. Despite previous research in the region, a georeferenced map of the glaciers has only recently been completed and an enhanced version of it is reproduced in colour here. The mountains of this region reach heights in excess of 3,000 m and the glaciers on their slopes range in size from 0.1 to 10.4 km2. The mapping has been compiled through the interpretation of Landsat 7 ETM+ satellite imagery from August 2001 which has been augmented by data from a field campaign undertaken at the same time. The glaciers of the region are of the cold, ‘firn-less’ continental type and their mass balance relies heavily on the formation of superimposed ice. Moraines which lie in front of the glaciers by up to a few kilometres are believed to date from the Little Ice Age (ca. 1550-1850 AD). Over half of the glaciers mapped have shown marked retreat from these moraines.
Resumo:
This paper presents the first systematic chronostratigraphic study of the river terraces of the Exe catchment in South West England and a new conceptual model for terrace formation in unglaciated basins with applicability to terrace staircase sequences elsewhere. The Exe catchment lay beyond the maximum extent of Pleistocene ice sheets and the drainage pattern evolved from the Tertiary to the Middle Pleistocene, by which time the major valley systems were in place and downcutting began to create a staircase of strath terraces. The higher terraces (8-6) typically exhibit altitudinal overlap or appear to be draped over the landscape, whilst the middle terraces show greater altitudinal separation and the lowest terraces are of a cut and fill form. The terrace deposits investigated in this study were deposited in cold phases of the glacial-interglacial Milankovitch climatic cycles with the lowest four being deposited in the Devensian Marine Isotope Stages (MIS) 4-2. A new cascade process-response model is proposed of basin terrace evolution in the Exe valley, which emphasises the role of lateral erosion in the creation of strath terraces and the reworking of inherited resistant lithological components down through the staircase. The resultant emergent valley topography and the reworking of artefacts along with gravel clasts, have important implications for the dating of hominin presence and the local landscapes they inhabited. Whilst the terrace chronology suggested here is still not as detailed as that for the Thames or the Solent System it does indicate a Middle Palaeolithic hominin presence in the region, probably prior to the late Wolstonian Complex or MIS 6. This supports existing data from cave sites in South West England.
Resumo:
Simultaneous observations of cloud microphysical properties were obtained by in-situ aircraft measurements and ground based Radar/Lidar. Widespread mid-level stratus cloud was present below a temperature inversion (~5 °C magnitude) at 3.6 km altitude. Localised convection (peak updraft 1.5 m s−1) was observed 20 km west of the Radar station. This was associated with convergence at 2.5 km altitude. The convection was unable to penetrate the inversion capping the mid-level stratus.
The mid-level stratus cloud was vertically thin (~400 m), horizontally extensive (covering 100 s of km) and persisted for more than 24 h. The cloud consisted of supercooled water droplets and small concentrations of large (~1 mm) stellar/plate like ice which slowly precipitated out. This ice was nucleated at temperatures greater than −12.2 °C and less than −10.0 °C, (cloud top and cloud base temperatures, respectively). No ice seeding from above the cloud layer was observed. This ice was formed by primary nucleation, either through the entrainment of efficient ice nuclei from above/below cloud, or by the slow stochastic activation of immersion freezing ice nuclei contained within the supercooled drops. Above cloud top significant concentrations of sub-micron aerosol were observed and consisted of a mixture of sulphate and carbonaceous material, a potential source of ice nuclei. Particle number concentrations (in the size range 0.1
Resumo:
Transient epileptic amnesia (TEA) is characterized by deficits in autobiographical memory (AM). One of the functions of AM is to maintain the self, suggesting that the self may undergo changes as a result of memory loss in temporal lobe epilepsy. To examine this, we used a modification of a task used to assess the relationship between self and memory (the IAM task) in a single case, E.B. Despite complaints of AM loss, E.B. had no difficulty in producing a range of self-images (e.g., I am a husband) and collections of self-defining AMs in support of these statements. E.B. produced fewer episodic memories at times of self-formation, but this did not seem to impact on the maintenance of self. The results support recent work suggesting the self may be maintained in the absence of episodic memory. The application of tasks such as that used here will further elucidate AM impairment in temporal lobe epilepsy. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A number of transient climate runs simulating the last 120kyr have been carried out using FAMOUS, a fast atmosphere-ocean general circulation model (AOGCM). This is the first time such experiments have been done with a full AOGCM, providing a three-dimensional simulation of both atmosphere and ocean over this period. Our simulation thus includes internally generated temporal variability over periods from days to millennia, and physical, detailed representations of important processes such as clouds and precipitation. Although the model is fast, computational restrictions mean that the rate of change of the forcings has been increased by a factor of 10, making each experiment 12kyr long. Atmospheric greenhouse gases (GHGs), northern hemisphere ice sheets and variations in solar radiation arising from changes in the Earth's orbit are treated as forcing factors, and are applied either separately or combined in different experiments. The long-term temperature changes on Antarctica match well with reconstructions derived from ice-core data, as does variability on timescales longer than 10 kyr. Last Glacial Maximum (LGM) cooling on Greenland is reasonably well simulated, although our simulations, which lack ice-sheet meltwater forcing, do not reproduce the abrupt, millennial scale climate shifts seen in northern hemisphere climate proxies or their slower southern hemisphere counterparts. The spatial pattern of sea surface cooling at the LGM matches proxy reconstructions reasonably well. There is significant anti-correlated variability in the strengths of the Atlantic Meridional Overturning Circulation (AMOC) and the Antarctic Circumpolar Current (ACC) on timescales greater than 10kyr in our experiments. We find that GHG forcing weakens the AMOC and strengthens the ACC, whilst the presence of northern hemisphere ice-sheets strengthens the AMOC and weakens the ACC. The structure of the AMOC at the LGM is found to be sensitive to the details of the ice-sheet reconstruction used. The precessional component of the orbital forcing induces ~20kyr oscillations in the AMOC and ACC, whose amplitude is mediated by changes in the eccentricity of the Earth's orbit. These forcing influences combine, to first order, in a linear fashion to produce the mean climate and ocean variability seen in the run with all forcings.
Resumo:
Aircraft flying through cold ice-supersaturated air produce persistent contrails which contribute to the climate impact of aviation. Here, we demonstrate the importance of the weather situation, together with the route and altitude of the aircraft through this, on estimating contrail coverage. The results have implications for determining the climate impact of contrails as well as potential mitigation strategies. Twenty-one years of re-analysis data are used to produce a climatological assessment of conditions favorable for persistent contrail formation between 200 and 300 hPa over the north Atlantic in winter. The seasonal-mean frequency of cold ice-supersaturated regions is highest near 300 hPa, and decreases with altitude. The frequency of occurrence of ice-supersaturated regions varies with large-scale weather pattern; the most common locations are over Greenland, on the southern side of the jet stream and around the northern edge of high pressure ridges. Assuming aircraft take a great circle route, as opposed to a more realistic time-optimal route, is likely to lead to an error in the estimated contrail coverage, which can exceed 50% for westbound north Atlantic flights. The probability of contrail formation can increase or decrease with height, depending on the weather pattern, indicating that the generic suggestion that flying higher leads to fewer contrails is not robust.
Resumo:
The extent and thickness of the Arctic sea ice cover has decreased dramatically in the past few decades with minima in sea ice extent in September 2005 and 2007. These minima have not been predicted in the IPCC AR4 report, suggesting that the sea ice component of climate models should more realistically represent the processes controlling the sea ice mass balance. One of the processes poorly represented in sea ice models is the formation and evolution of melt ponds. Melt ponds accumulate on the surface of sea ice from snow and sea ice melt and their presence reduces the albedo of the ice cover, leading to further melt. Toward the end of the melt season, melt ponds cover up to 50% of the sea ice surface. We have developed a melt pond evolution theory. Here, we have incorporated this melt pond theory into the Los Alamos CICE sea ice model, which has required us to include the refreezing of melt ponds. We present results showing that the presence, or otherwise, of a representation of melt ponds has a significant effect on the predicted sea ice thickness and extent. We also present a sensitivity study to uncertainty in the sea ice permeability, number of thickness categories in the model representation, meltwater redistribution scheme, and pond albedo. We conclude with a recommendation that our melt pond scheme is included in sea ice models, and the number of thickness categories should be increased and concentrated at lower thicknesses.
Resumo:
The extent and thickness of the Arctic sea ice cover has decreased dramatically in the past few decades with minima in sea ice extent in September 2007 and 2011 and climate models did not predict this decline. One of the processes poorly represented in sea ice models is the formation and evolution of melt ponds. Melt ponds form on Arctic sea ice during the melting season and their presence affects the heat and mass balances of the ice cover, mainly by decreasing the value of the surface albedo by up to 20%. We have developed a melt pond model suitable for forecasting the presence of melt ponds based on sea ice conditions. This model has been incorporated into the Los Alamos CICE sea ice model, the sea ice component of several IPCC climate models. Simulations for the period 1990 to 2007 are in good agreement with observed ice concentration. In comparison to simulations without ponds, the September ice volume is nearly 40% lower. Sensitivity studies within the range of uncertainty reveal that, of the parameters pertinent to the present melt pond parameterization and for our prescribed atmospheric and oceanic forcing, variations of optical properties and the amount of snowfall have the strongest impact on sea ice extent and volume. We conclude that melt ponds will play an increasingly important role in the melting of the Arctic ice cover and their incorporation in the sea ice component of Global Circulation Models is essential for accurate future sea ice forecasts.
Resumo:
The time-dependent climate response to changing concentrations of greenhouse gases and sulfate aerosols is studied using a coupled general circulation model of the atmosphere and the ocean (ECHAM4/OPYC3). The concentrations of the well-mixed greenhouse gases like CO2, CH4, N2O, and CFCs are prescribed for the past (1860–1990) and projected into the future according to International Panel on Climate Change (IPCC) scenario IS92a. In addition, the space–time distribution of tropospheric ozone is prescribed, and the tropospheric sulfur cycle is calculated within the coupled model using sulfur emissions of the past and projected into the future (IS92a). The radiative impact of the aerosols is considered via both the direct and the indirect (i.e., through cloud albedo) effect. It is shown that the simulated trend in sulfate deposition since the end of the last century is broadly consistent with ice core measurements, and the calculated radiative forcings from preindustrial to present time are within the uncertainty range estimated by IPCC. Three climate perturbation experiments are performed, applying different forcing mechanisms, and the results are compared with those obtained from a 300-yr unforced control experiment. As in previous experiments, the climate response is similar, but weaker, if aerosol effects are included in addition to greenhouse gases. One notable difference to previous experiments is that the strength of the Indian summer monsoon is not fundamentally affected by the inclusion of aerosol effects. Although the monsoon is damped compared to a greenhouse gas only experiment, it is still more vigorous than in the control experiment. This different behavior, compared to previous studies, is the result of the different land–sea distribution of aerosol forcing. Somewhat unexpected, the intensity of the global hydrological cycle becomes weaker in a warmer climate if both direct and indirect aerosol effects are included in addition to the greenhouse gases. This can be related to anomalous net radiative cooling of the earth’s surface through aerosols, which is balanced by reduced turbulent transfer of both sensible and latent heat from the surface to the atmosphere.