971 resultados para Transcription factor binding site motifs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defined model systems consisting of physiologically spaced arrays of H3/H4 tetramer⋅5S rDNA complexes have been assembled in vitro from pure components. Analytical hydrodynamic and electrophoretic studies have revealed that the structural features of H3/H4 tetramer arrays closely resemble those of naked DNA. The reptation in agarose gels of H3/H4 tetramer arrays is essentially indistinguishable from naked DNA, the gel-free mobility of H3/H4 tetramer arrays relative to naked DNA is reduced by only 6% compared with 20% for nucleosomal arrays, and H3/H4 tetramer arrays are incapable of folding under ionic conditions where nucleosomal arrays are extensively folded. We further show that the cognate binding sites for transcription factor TFIIIA are significantly more accessible when the rDNA is complexed with H3/H4 tetramers than with histone octamers. These results suggest that the processes of DNA replication and transcription have evolved to exploit the unique structural properties of H3/H4 tetramer arrays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterotrimeric G proteins and tyrosine kinases are two major cellular signal transducers. Although G proteins are known to activate tyrosine kinases, the activation mechanism is not clear. Here, we demonstrate that G protein Gqα binds directly to the nonreceptor Bruton’s tyrosine kinase (Btk) to a region composed of a Tec-homology (TH) domain and a sarcoma virus tyrosine kinase (Src)-homology 3 (SH3) domain both in vitro and in vivo. Only active GTP-bound Gqα, not inactive GDP-bound Gqα, can bind to Btk. Mutations of Btk that disrupt its ability to bind Gqα also eliminate Btk stimulation by Gqα, suggesting that this interaction is important for Btk activation. Remarkably, the structure of this TH (including a proline-rich sequence) -SH3 fragment of the Btk family of tyrosine kinases shows an intramolecular interaction. Furthermore, the crystal structure of the Src family of tyrosine kinases reveals that the intramolecular interaction of SH3 and its ligand is the major determining factor keeping the kinase inactive. Thus, we propose an activation model that entails binding of Gqα to the TH-SH3 region, thereby disrupting the TH-SH3 intramolecular interaction and activating Btk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human androgen receptor (AR) is a ligand-activated transcription factor that regulates genes important for male sexual differentiation and development. To better understand the role of the receptor as a transcription factor we have studied the mechanism of action of the N-terminal transactivation function. In a protein–protein interaction assay the AR N terminus (amino acids 142–485) selectively bound to the basal transcription factors TFIIF and the TATA-box-binding protein (TBP). Reconstitution of the transactivation activity in vitro revealed that AR142–485 fused to the LexA protein DNA-binding domain was competent to activate a reporter gene in the presence of a competing DNA template lacking LexA binding sites. Furthermore, consistent with direct interaction with basal transcription factors, addition of recombinant TFIIF relieved squelching of basal transcription by AR142–485. Taken together these results suggest that one mechanism of transcriptional activation by the AR involves binding to TFIIF and recruitment of the transcriptional machinery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The panneural protein Prospero is required for proper differentiation of neuronal lineages and proper expression of several genes in the nervous system of Drosophila. Prospero is an evolutionarily conserved, homeodomain-related protein with dual subcellular localization. Here we show that Prospero is a sequence-specific DNA-binding protein with novel sequence preferences that can act as a transcription factor. In this role, Prospero can interact with homeodomain proteins to differentially modulate their DNA-binding properties. The relevance of functional interactions between Prospero and homeodomain proteins is supported by the observation that Prospero, together with the homeodomain protein Deformed, is required for proper regulation of a Deformed-dependent neural-specific transcriptional enhancer. We have localized the DNA-binding and homeodomain protein-interacting activities of Prospero to its highly conserved C-terminal region, and we have shown that the two regulatory capacities are independent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) binding proteins (IGFBPs) modulate the actions of the insulin-like growth factors in endocrine, paracrine, and autocrine settings. Additionally, some IGFBPs appear to exhibit biological effects that are IGF independent. The six high-affinity IGFBPs that have been characterized to date exhibit 40–60% amino acid sequence identity overall, with the most conserved sequences in their NH2 and COOH termini. We have recently demonstrated that the product of the mac25/IGFBP-7 gene, which shows significant conservation in the NH2 terminus, including an “IGFBP motif” (GCGCCXXC), exhibits low-affinity IGF binding. The closely related mammalian genes connective tissue growth factor (CTGF) gene, nov, and cyr61 encode secreted proteins that also contain the conserved sequences and IGFBP motifs in their NH2 termini. To ascertain if these genes, along with mac25/IGFBP-7, encode a family of low-affinity IGFBPs, we assessed the IGF binding characteristics of recombinant human CTGF (rhCTGF). The ability of baculovirus-synthesized rhCTGF to bind IGFs was demonstrated by Western ligand blotting, affinity cross-linking, and competitive affinity binding assays using 125I-labeled IGF-I or IGF-II and unlabeled IGFs. CTGF, like mac25/IGFBP-7, specifically binds IGFs, although with relatively low affinity. On the basis of these data, we propose that CTGF represents another member of the IGFBP family (IGFBP-8) and that the CTGF gene, mac25/IGFBP-7, nov, and cyr61 are members of a family of low-affinity IGFBP genes. These genes, along with those encoding the high-affinity IGFBPs 1–6, together constitute an IGFBP superfamily whose products function in IGF-dependent or IGF-independent modes to regulate normal and neoplastic cell growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatocyte nuclear factor 4α (HNF4α) plays a critical role in regulating the expression of many genes essential for normal functioning of liver, gut, kidney, and pancreatic islets. A nonsense mutation (Q268X) in exon 7 of the HNF4α gene is responsible for an autosomal dominant, early-onset form of non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young; gene named MODY1). Although this mutation is predicted to delete 187 C-terminal amino acids of the HNF4α protein the molecular mechanism by which it causes diabetes is unknown. To address this, we first studied the functional properties of the MODY1 mutant protein. We show that it has lost its transcriptional transactivation activity, fails to dimerize and bind DNA, implying that the MODY1 phenotype is because of a loss of HNF4α function. The effect of loss of function on HNF4α target gene expression was investigated further in embryonic stem cells, which are amenable to genetic manipulation and can be induced to form visceral endoderm. Because the visceral endoderm shares many properties with the liver and pancreatic β-cells, including expression of genes for glucose transport and metabolism, it offers an ideal system to investigate HNF4-dependent gene regulation in glucose homeostasis. By exploiting this system we have identified several genes encoding components of the glucose-dependent insulin secretion pathway whose expression is dependent upon HNF4α. These include glucose transporter 2, and the glycolytic enzymes aldolase B and glyceraldehyde-3-phosphate dehydrogenase, and liver pyruvate kinase. In addition we have found that expression of the fatty acid binding proteins and cellular retinol binding protein also are down-regulated in the absence of HNF4α. These data provide direct evidence that HNF4α is critical for regulating glucose transport and glycolysis and in doing so is crucial for maintaining glucose homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

“TKO” is an expression vector that knocks out the activity of a transcription factor in vivo under genetic control. We describe a successful test of this concept that used a sea urchin transcription factor of known function, P3A2, as the target. The TKO cassette employs modular cis-regulatory elements to express an encoded single-chain antibody that prevents the P3A2 protein from binding DNA in vivo. In normal development, one of the functions of the P3A2 transcription factor is to repress directly the expression of the CyIIIa cytoskeletal actin gene outside the aboral ectoderm of the embryo. Ectopic expression in oral ectoderm occurs if P3A2 sites are deleted from CyIIIa expression constructs, and we show here that introduction of an αP3A2⋅TKO expression cassette causes exactly the same ectopic oral expression of a coinjected wild-type CyIIIa construct. Furthermore, the αP3A2⋅TKO cassette derepresses the endogenous CyIIIa gene in the oral ectoderm and in the endoderm. αP3A2⋅TKO thus abrogates the function of the endogenous SpP3A2 transcription factor with respect to spatial repression of the CyIIIa gene. Widespread expression of αP3A2⋅TKO in the endoderm has the additional lethal effect of disrupting morphogenesis of the archenteron, revealing a previously unsuspected function of SpP3A2 in endoderm development. In principle, TKO technology could be utilized for spatially and temporally controlled blockade of any transcription factor in any biological system amenable to gene transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the essential components of a phosphatase that specifically dephosphorylates the Saccharomyces cerevisiae RNA polymerase II (RPII) large subunit C-terminal domain (CTD) is a novel polypeptide encoded by an essential gene termed FCP1. The Fcp1 protein is localized to the nucleus, and it binds the largest subunit of the yeast general transcription factor IIF (Tfg1). In vitro, transcription factor IIF stimulates phosphatase activity in the presence of Fcp1 and a second complementing fraction. Two distinct regions of Fcp1 are capable of binding to Tfg1, but the C-terminal Tfg1 binding domain is dispensable for activity in vivo and in vitro. Sequence comparison reveals that residues 173–357 of Fcp1 correspond to an amino acid motif present in proteins of unknown function predicted in many organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously isolated the SKN7 gene in a screen designed to isolate new components of the G1-S cell cycle transcription machinery in budding yeast. We have now found that Skn7 associates with Mbp1, the DNA-binding component of the G1-S transcription factor DSC1/MBF. SKN7 and MBP1 show several genetic interactions. Skn7 overexpression is lethal and is suppressed by a mutation in MBP1. Similarly, high overexpression of Mbp1 is lethal and can be suppressed by skn7 mutations. SKN7 is also required for MBP1 function in a mutant compromised for G1-specific transcription. Gel-retardation assays indicate that Skn7 is not an integral part of MBF. However, a physical interaction between Skn7 and Mbp1 was detected using two-hybrid assays and GST pulldowns. Thus, Skn7 and Mbp1 seem to form a transcription factor independent of MBF. Genetic data suggest that this new transcription factor could be involved in the bud-emergence process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Factor VIIa (VIIa), the serine protease that initiates the coagulation pathways, is catalytically activated upon binding to its cell surface receptor and cofactor tissue factor (TF). This study provides a comprehensive analysis of the functional surface of VIIa by alanine scanning mutagenesis of 112 residues. Residue side chains were defined which contribute to TF binding and factor X hydrolysis. Energetically important binding contacts at the interface with TF were identified in the first epidermal growth factor domain of VIIa (Gln-64, Ile-69, Phe-71, Arg-79) and in the protease domain (Arg-277, Met-306, Asp-309). The observed energetic defects are in good agreement with the corresponding residues in TF, suggesting that the VIIa light chain plays a prominent role in high affinity binding of cofactor. Mutation of protease domain interface residues indicated that TF allosterically influences the active site of VIIa. Stabilization of a labile zymogen to enzyme transition could explain the activating effect of TF on VIIa catalytic function. Residues important for factor X hydrolysis were found in three regions of the protease domain: (i) specificity determinants in the catalytic cleft and adjacent loops, (ii) an exosite near the TF binding site, and (iii) a large electronegative exosite which is in a position analogous to the basic exosite I of thrombin. TF regions involved in factor X activation are positioned on the same face of the TF·VIIa complex as the two exosites identified on the protease domain surface, providing evidence for an extended interaction of TF·VIIa with macromolecular substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The LMO2 gene is activated by chromosomal translocations in human T cell acute leukemias, but in mouse embryogenesis, Lmo2 is essential for initiation of yolk sac and definitive hematopoiesis. The LMO2 protein comprises two LIM–zinc-finger-like protein interaction modules and functions by interaction with specific partners in DNA-binding transcription complexes. We have now investigated the role of Lmo2-associated transcription complexes in the formation of the vascular system by following the fate of Lmo2-null embryonic stem (ES) cells in mouse chimeras. Lmo2 is expressed in vascular endothelium, and Lmo2-null ES cells contributed to the capillary network normally until around embryonic day 9. However, after this time, marked disorganization of the vascular system was observed in those chimeric mice that have a high contribution of Lmo2-null ES cells. Moreover, Lmo2-null ES cells do not contribute to endothelial cells of large vessel walls of surviving chimeric mice after embryonic day 10. These results show that Lmo2 is not needed for de novo capillary formation from mesoderm but is necessary for angiogenic remodeling of the existing capillary network into mature vasculature. Thus, Lmo2-mediated transcription complexes not only regulate distinct phases of hematopoiesis but also angiogenesis, presumably by Lmo2 interacting with distinct partners in the different settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell adhesion molecule L1 regulates axonal guidance and fasciculation during development. We previously identified the regulatory region of the L1 gene and showed that it was sufficient for establishing the neural pattern of L1 expression in transgenic mice. In the present study, we characterize a DNA element within this region called the HPD that contains binding motifs for both homeodomain and Pax proteins and responds to signals from bone morphogenetic proteins (BMPs). An ATTA sequence within the core of the HPD was required for binding to the homeodomain protein Barx2 while a separate paired domain recognition motif was necessary for binding to Pax-6. In cellular transfection experiments, L1-luciferase reporter constructs containing the HPD were activated an average of 4-fold by Pax-6 in N2A cells and 5-fold by BMP-2 and BMP-4 in Ng108 cells. Both of these responses were eliminated on deletion of the HPD from L1 constructs. In transgenic mice, deletion of the HPD from an L1-lacZ reporter resulted in a loss of β-galactosidase expression in the telencephalon and mesencephalon. Collectively, our experiments indicate that the HPD regulates L1 expression in neural tissues via homeodomain and Pax proteins and is likely to be a target of BMP signaling during development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal nitric oxide (NO) synthase (nNOS) is dynamically regulated in response to a variety of physiologic and pathologic stimuli. Although the dynamic regulation of nNOS is well established, the molecular mechanisms by which such diverse stimuli regulate nNOS expression have not yet been identified. We describe experiments demonstrating that Ca2+ entry through voltage-sensitive Ca2+ channels regulates nNOS expression through alternate promoter usage in cortical neurons and that nNOS exon 2 contains the regulatory sequences that respond to Ca2+. Deletion and mutational analysis of the nNOS exon 2 promoter reveals two critical cAMP/Ca2+ response elements (CREs) that are immediately upstream of the transcription start site. CREB binds to the CREs within the nNOS gene. Mutation of the nNOS CREs as well as blockade of CREB function results in a dramatic loss of nNOS transcription. These findings suggest that nNOS is a Ca2+-regulated gene through the interactions of CREB on the CREs within the nNOS exon 2 promoter and that these interactions are likely to be centrally involved in the regulation of nNOS in response to neuronal injury and activity-dependent plasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of the catalytically inactive mutant (C215S) of the human protein-tyrosine phosphatase 1B (PTP1B) has been solved to high resolution in two complexes. In the first, crystals were grown in the presence of bis-(para-phosphophenyl) methane (BPPM), a synthetic high-affinity low-molecular weight nonpeptidic substrate (Km = 16 μM), and the structure was refined to an R-factor of 18.2% at 1.9 Å resolution. In the second, crystals were grown in a saturating concentration of phosphotyrosine (pTyr), and the structure was refined to an R-factor of 18.1% at 1.85 Å. Difference Fourier maps showed that BPPM binds PTP1B in two mutually exclusive modes, one in which it occupies the canonical pTyr-binding site (the active site), and another in which a phosphophenyl moiety interacts with a set of residues not previously observed to bind aryl phosphates. The identification of a second pTyr molecule at the same site in the PTP1B/C215S–pTyr complex confirms that these residues constitute a low-affinity noncatalytic aryl phosphate-binding site. Identification of a second aryl phosphate binding site adjacent to the active site provides a paradigm for the design of tight-binding, highly specific PTP1B inhibitors that can span both the active site and the adjacent noncatalytic site. This design can be achieved by tethering together two small ligands that are individually targeted to the active site and the proximal noncatalytic site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIV type 1 (HIV-1) specifically uses host cell tRNALys-3 as a primer for reverse transcription. The 3′ 18 nucleotides of this tRNA are complementary to a region on the HIV RNA genome known as the primer binding site (PBS). HIV-1 has a strong preference for maintaining a lysine-specific PBS in vivo, and viral genomes with mutated PBS sequences quickly revert to be complementary to tRNALys-3. To investigate the mechanism for the observed PBS reversion events in vitro, we examined the capability of the nucleocapsid protein (NC) to anneal various tRNA primer sequences onto either complementary or noncomplementary PBSs. We show that NC can anneal different full-length tRNAs onto viral RNA transcripts derived from the HIV-1 MAL or HXB2 isolates, provided that the PBS is complementary to the tRNA used. In contrast, NC promotes specific annealing of only tRNALys-3 onto an RNA template (HXB2) whose PBS sequence has been mutated to be complementary to the 3′ 18 nt of human tRNAPro. Moreover, HIV-1 reverse transcriptase extends this binary complex from the proline-specific PBS. The formation of the noncomplementary binary complex does not occur when a chimeric tRNALys/Pro containing proline-specific D and anticodon domains is used as the primer. Thus, elements outside the acceptor-TΨC domains of tRNALys-3 play an important role in preferential primer use in vitro. Our results support the hypothesis that mutant PBS reversion is a result of tRNALys-3 annealing onto and extension from a PBS that specifies an alternate host cell tRNA.