954 resultados para Training Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prepared under contract no. 82-34-70-29 for the U.S. Dept. of Labor, Employment and Training Administration, Office of Research and Development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inactivity is associated with endothelial dysfunction and the development of cardiovascular disease. Exercise training has a favourable effect in the management of hypertension, heart failure and ischaemic heart disease. These beneficial effects are probably mediated through improvements of vascular function and, in this issue of Clinical Science, Hagg and co-authors propose a coronary artery effect. The use of a Doppler technique for non-invasive assessment of coronary flow reserve in a small animal model is an exciting aspect of this study. If feasible in the hands of other investigators, the availability of sequential coronary flow measurements in animal models may help improve our understanding of the mechanisms of disorders of the coronary circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary healthcare professionals’ lack of knowledge about complementary medicine is a concern to both patients and government. Educational institutions in the field outline needs and propose various models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three experiments are reported that examined the process by which trainees learn decision-making skills during a critical incident training program. Formal theories of category learning were used to identify two processes that may be responsible for the acquisition of decision-making skills: rule learning and exemplar learning. Experiments I and 2 used the process dissociation procedure (L. L. Jacoby, 1998) to evaluate the contribution of these processes to performance. The results suggest that trainees used a mixture of rule and exemplar learning. Furthermore, these learning processes were influenced by different aspects of training structure and design. The goal of Experiment 3 was to develop training techniques that enable trainees to use a rule adaptively. Trainees were tested on cases that represented exceptions to the rule. Unexpectedly, the results suggest that providing general instruction regarding the kinds of conditions in which a decision rule does not apply caused them to fixate on the specific conditions mentioned and impaired their ability to identify other conditions in which the rule might not apply. The theoretical, methodological, and practical implications of the results are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is currently considerable interest in developing general non-linear density models based on latent, or hidden, variables. Such models have the ability to discover the presence of a relatively small number of underlying `causes' which, acting in combination, give rise to the apparent complexity of the observed data set. Unfortunately, to train such models generally requires large computational effort. In this paper we introduce a novel latent variable algorithm which retains the general non-linear capabilities of previous models but which uses a training procedure based on the EM algorithm. We demonstrate the performance of the model on a toy problem and on data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian ``ink generators'' spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the Expectation Maximization (EM) algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages. (1) After identifying the model most likely to have generated the data, the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style. (2) During the process of explaining the image, generative models can perform recognition driven segmentation. (3) The method involves a relatively small number of parameters and hence training is relatively easy and fast. (4) Unlike many other recognition schemes it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is it requires much more computation than more standard OCR techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deformable models are an attractive approach to recognizing objects which have considerable within-class variability such as handwritten characters. However, there are severe search problems associated with fitting the models to data which could be reduced if a better starting point for the search were available. We show that by training a neural network to predict how a deformable model should be instantiated from an input image, such improved starting points can be obtained. This method has been implemented for a system that recognizes handwritten digits using deformable models, and the results show that the search time can be significantly reduced without compromising recognition performance. © 1997 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radial Basis Function networks with linear outputs are often used in regression problems because they can be substantially faster to train than Multi-layer Perceptrons. For classification problems, the use of linear outputs is less appropriate as the outputs are not guaranteed to represent probabilities. In this paper we show how RBFs with logistic and softmax outputs can be trained efficiently using algorithms derived from Generalised Linear Models. This approach is compared with standard non-linear optimisation algorithms on a number of datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deficiencies of stationary models applied to financial time series are well documented. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We use a dynamic switching (modelled by a hidden Markov model) combined with a linear dynamical system in a hybrid switching state space model (SSSM) and discuss the practical details of training such models with a variational EM algorithm due to [Ghahramani and Hilton,1998]. The performance of the SSSM is evaluated on several financial data sets and it is shown to improve on a number of existing benchmark methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most traditional methods for extracting the relationships between two time series are based on cross-correlation. In a non-linear non-stationary environment, these techniques are not sufficient. We show in this paper how to use hidden Markov models to identify the lag (or delay) between different variables for such data. Adopting an information-theoretic approach, we develop a procedure for training HMMs to maximise the mutual information (MMI) between delayed time series. The method is used to model the oil drilling process. We show that cross-correlation gives no information and that the MMI approach outperforms maximum likelihood.