900 resultados para Traffic Coefficient


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Diffusion weighted magnetic resonance imaging (MRI) is now widely used in human brain diagnosis.1 To date molecular mechanisms underlying changes in Apparent Diffusion Coefficient (ADC) signals remain poorly understood. AQP4, localized to astrocytes, is one of the most highly expressed cerebral AQPs.2 AQP4 is involved in water movement within the cell membrane of cultured astrocytes.3 We hypothesize that AQP4 contributes to water diffusion and underlying ADC values in normal brain. Methods: We used an RNA interference (RNAi) protocol in vivo, to acutely knockdown expression of AQP4 in rat brain and to determine whether this was associated with changes in brain ADC values using MRI protocols as previously described.4 RNAi was performed using specific small interference RNA (siRNA) against AQP4 (siAQP4) and a non-targeted-siRNA (siGLO) as a control. The specificity and efficiency of the siAQP4 were first tested in vitro in astrocyte and hippocampal slice cultures. In vivo, siRNAs were injected into the rat cortex 3d prior to MRI acquisition and AQP4 was assessed by western blot (n=4) and immunohistochemistry (n=6). Histology was performed on adjacent slices. Results: siAQP4 application on primary astrocyte cultures induced a 76% decrease in AQP4 expression after 4 days. In hippocampal slice cultures; we also found a significant decrease in AQP4 expression in astrocytes after siAQP4. In vivo, injection of non-targeted siRNA (siGLO) tagged with CY3 allowed us to show that GFAP positive cells (astrocytes) were positively stained with CY3-siGLO, showing efficient transfection. Western blot and immunohistochemical analysis showed that siAQP4 induced a ~30% decrease in AQP4 expression without modification of tissue properties or cell death. After siAQP4 treatment, a significant decrease in ADC values (~50%) were observed without altered of T2 values. Conclusions: Together these results suggest that AQP4 reduces water diffusion through the astrocytic plasma membrane and decreases ADC values. Our findings demonstrate for the first time that astrocytic AQP4 contributes significantly to brain water diffusion and ADC values in normal brain. These results open new avenues to interpretation of ADC values under normal physiological conditions and in acute and chronic brain injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cultivation of sugarcane with intensive use of machinery, especially for harvest, induces soil compaction, affecting the crop development. The control of agricultural traffic is an alternative of management in the sector, with a view to preserve the soil physical quality, resulting in increased sugarcane root growth, productivity and technological quality. The objective of this study was to evaluate the physical quality of an Oxisol with and without control traffic and the resulting effects on sugarcane root development, productivity and technological quality. The following managements were tested: no traffic control (NTC), traffic control consisting of an adjustment of the track width of the tractor and sugarcane trailer (TC1) and traffic control consisting of an adjustment of the track width of the tractor and trailer and use of an autopilot (TC2). Soil samples were collected (layers 0.00-0.10; 0.10-0.20 and 0.20-0.30 m) in the plant rows, inter-row center and seedbed region, 0.30 m away from the plant row. The productivity was measured with a specific weighing scale. The technological variables of sugarcane were measured in each plot. Soil cores were collected to analyze the root system. In TC2, the soil bulk density and compaction degree were lowest and total porosity and macroporosity highest in the plant row. Soil penetration resistance in the plant row, was less than 2 MPa in TC1 and TC2. Soil aggregation and total organic carbon did not differ between the management systems. The root surface and volume were increased in TC1 and TC2, with higher productivity and sugar yield than under NTC. The sugarcane variables did not differ between the managements. The soil physical quality in the plant row was preserved under management TC1 and TC2, with an improved root development and increases of 18.72 and 20.29 % in productivity and sugar yield, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.