301 resultados para Trachurus japonicus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Memoria presentada para optar al Diploma de Estudios Avanzados en Ciencias del Mar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

E. Schmidt

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Von Apotheker Mortimer Scholtz

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Von Apotheker M. Scholtz

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy metals pollution in marine environments has caused great damage to marine biological and ecological systems. Heavy metals accumulate in marine creatures, after which they are delivered to higher trophic levels of marine organisms through the marine food chain, which causes serious harm to marine biological systems and human health. Additionally, excess carbon dioxide in the atmosphere has caused ocean acidification. Indeed, about one third of the CO2 released into the atmosphere by anthropogenic activities since the beginning of the industrial revolution has been absorbed by the world's oceans, which play a key role in moderating climate change. Modeling has shown that, if current trends in CO2 emissions continue, the average pH of the ocean will reach 7.8 by the end of this century, corresponding to 0.5 units below the pre-industrial level, or a three-fold increase in H+ concentration. The ocean pH has not been at this level for several millions of years. Additionally, these changes are occurring at speeds 100 times greater than ever previously observed. As a result, several marine species, communities and ecosystems might not have time to acclimate or adapt to these fast changes in ocean chemistry. In addition, decreasing ocean pH has the potential to seriously affect the growth, development and reproduction reproductive processes of marine organisms, as well as threaten normal development of the marine ecosystem. Copepods are an important part of the meiofauna that play an important role in the marine ecosystem. Pollution of the marine environment can influence their growth and development, as well as the ecological processes they are involved in. Accordingly, there is important scientific value to investigation of the response of copepods to ocean acidification and heavy metals pollution. In the present study, we evaluated the effects of simulated future ocean acidification and the toxicological interaction between ocean acidity and heavy metals of Cu and Cd on T. japonicus. To accomplish this, harpacticoids were exposed to Cu and Cd concentration gradient seawater that had been equilibrated with CO2 and air to reach pH 8.0, 7.7, 7.3 and 6.5 for 96 h. Survival was not significantly suppressed under single sea water acidification, and the final survival rates were greater than 93% in both the experimental groups and the controls. The toxicity of Cu to T. japonicus was significantly affected by sea water acidification, with the 96h LC50 decreasing by nearly threefold from 1.98 to 0.64 mg/L with decreasing pH. The 96 h LC50 of Cd decreased with decreasing pH, but there was no significant difference in mortality among pH treatments. The results of the present study demonstrated that the predicted future ocean acidification has the potential to negatively affect survival of T. japonicus by exacerbating the toxicity of Cu. The calculated safe concentrations of Cu were 11.9 (pH 7.7) and 10.5 (pH 7.3) µg/L, which were below the class I value and very close to the class II level of the China National Quality Standard for Sea Water. Overall, these results indicate that the Chinese coastal sea will face a

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the impact of ocean acidification on the early development of sea cucumber Apostichopus japonicus. The effect of pH-levels (pH 8.04, 7.85, 7.70 and 7.42) were tested on post-fertilization success, developmental (stage duration) and growth rates. Post-fertilization success decreased linearly with pH leading to a 6% decrease at pH 7.42 as compared to pH 8.1. The impact of pH on developmental time was stage-dependent: (1) stage duration increased linearly with decreasing pH in early-auricularia stage; (2) decreased linearly with decreasing pH in the mid-auricularia stage; but (3) pH decline had no effect on the late-auricularia stage. At the end of the experiment, the size of doliolaria larvae linearly increased with decreasing pH. In conclusion, a 0.62 unit decrease in pH had relatively small effects on A. japonicus early life-history compared to other echinoderms, leading to a maximum of 6% decrease in post-fertilization success and subtle effects on growth and development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification (OA) caused by excessive CO2 is a potential ecological threat to marine organisms. The impacts of OA on echinoderms are well-documented, but there has been a strong bias towards sea urchins, and limited information is available on sea cucumbers. This work examined the effect of medium-term (60 days) exposure to three pH levels (pH 8.06, 7.72, and 7.41, covering present and future pH variability) on the bioenergetic responses of the sea cucumber, Apostichopus japonicus, an ecologically and economically important holothurian in Asian coasts. Results showed that the measured specific growth rate linearly decreased with decreased pH, leading to a 0.42 %/day decrease at pH 7.41 compared with that at pH 8.06. The impacts of pH on physiological energetics were variable: measured energy consumption and defecation rates linearly decreased with decreased pH, whereas maintenance energy in calculated respiration and excretion were not significantly affected. No shift in energy allocation pattern was observed in A. japonicus upon exposure to pH 7.72 compared with pH 8.06. However, a significant shift in energy budget occurred upon exposure to pH 7.41, leading to decreased energy intake and increased percentage of energy that was lost in feces, thereby resulting in a significantly lowered allocation into somatic growth. These findings indicate that adult A. japonicus is resilient to the OA scenario at the end of the twenty-first century, but further acidification may negatively influence the grazing capability and growth, thereby influencing its ecological functioning as an "ecosystem engineer" and potentially harming its culture output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Warming of the world's oceans is predicted to have many negative effects on organisms as they have optimal thermal windows. In coastal waters, however, both temperatures and pCO2 (pH) exhibit diel variations, and biological performances are likely to be modulated by physical and chemical environmental changes. To understand how coastal zooplankton respond to the combined impacts of heat shock and increased pCO2, the benthic copepod Tigriopus japonicus were treated at temperatures of 24, 28, 32 and 36 °C to simulate natural coastal temperatures experienced in warming events, when acclimated in the short term to either ambient (LC, 390 µatm) or future CO2 (HC, 1000 µatm). HC and heat shock did not induce any mortality of T. japonicus, though respiration increased up to 32 °C before being depressed at 36 °C. Feeding rate peaked at 28 °C but did not differ between CO2 treatments. Expression of heat shock proteins (hsps mRNA) was positively related to temperature, with no significant differences between the CO2 concentrations. Nauplii production was not affected across all treatments. Our results demonstrate that T. japonicus responds more sensitively to heat shocks rather than to seawater acidification; however, ocean acidification may synergistically act with ocean warming to mediate the energy allocation of copepods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

European fishery off Mauritania (one of the most productive and most intensively exploited regions in the world) targeted to small pelagic fish accounts for 30% of the total catches in the area. The Instituto Español de Oceanografía (IEO), through its Centro Oceanográfico de Canarias, follows up the activity of these vessels that land at Spanish port (Las Palmas de Gran Canaria, Spain), under the European Project Data Collection (Regulation (EC) 1543/2000). One of the target groups in this fishery is Trachurus spp, commercially named “JAX”. During 2008 and 2009, several samples of this group from these landings were analysed, and Caranx rhonchus was the second species of importance. The mixture of these species in the landings of this UE fleet should be determined to improve the data provided to the international Working Groups responsible for assessment of those resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el Perú, la pesquería más importante está dirigida al recurso anchoveta (Engraulis ringens), el cual es extraído con red de cerco, sin embargo, este arte de pesca no es 100% selectivo, generando así capturas incidentales. Esta investigación tiene como objetivo analizar cuantitativamente el efecto de la pesquería de anchoveta sobre los recursos de la fauna acompañante mediante el estudio de diferencias espacio-temporales en términos de captura y composición específica de la ictiofauna que conformó la captura incidental en todo el litoral peruano proveniente de la flota industrial durante el periodo 2003-2011. Los resultados muestran valores de captura incidental significativamente mayores en la región sur del litoral peruano a comparación de la región norte y centro, principalmente durante los años 2003 y 2006, aunque la mayor riqueza de especies fue encontrada en la región norte. Por otro lado, dentro de la composición de la captura incidental a nivel especifico destacó la presencia constante de la Caballa (Scomber japonicus), Bagre (Galeichthys peruvianus) y Múnida (Pleuroncodes monodon) en la región norte, Lorna (Sciaena deliciosa), Pejerrey (Odontesthes regia regia), y Múnida (Pleuroncodes monodon) en la región centro y Jurel (Trachurus picturatus murphyi), Caballa (Scomber japonicus), Lorna (Sciaena deliciosa), Pejerrey (Odontesthes regia regia), Múnida (Pleuroncodes monodon), Camotillo (Diplectrum conceptione) y Pampanito (Trachinotus paitensis) en la región sur. Sin embargo, los mayores volúmenes capturados se debieron a recursos costeros y fueron capturados por la flota industrial de acero en la región sur del litoral peruano.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thiol tripeptides, glutathione (GSH) and homoglutathione (hGSH), perform multiple roles in legumes, including protection against toxicity of free radicals and heavy metals. The three genes involved in the synthesis of GSH and hGSH in the model legume, Lotus japonicus, have been fully characterized and appear to be present as single copies in the genome. The gamma-glutamylcysteine synthetase (gammaecs) gene was mapped on the long arm of chromosome 4 (70.0 centimorgans [cM]) and consists of 15 exons, whereas the glutathione synthetase (gshs) and homoglutathione synthetase (hgshs) genes were mapped on the long arm of chromosome 1 (81.3 cM) and found to be arranged in tandem, with a separation of approximately 8 kb. Both genes consist of 12 exons of exactly the same size (except exon 1, which is similar). Two types of transcripts were detected for the gshs gene, which putatively encode proteins localized in the plastids and cytosol. Promoter regions contain cis-acting regulatory elements that may be involved in the plant's response to light, hormones, and stress. Determination of transcript levels, enzyme activities, and thiol contents in nodules, roots, and leaves revealed that gammaecs and hgshs are expressed in all three plant organs, whereas gshs is significantly functional only in nodules. This strongly suggests an important role of GSH in the rhizobia-legume symbiosis.