952 resultados para Toxin
Resumo:
The effects of mildly acidic conditions on the free energy of unfolding (Delta G(u)(buff)) of the pore-forming alpha-hemolysin (alpha HL) from Staphylococcus aureus were assessed between pH 5.0 and 7.5 by measuring intrinsic tryptophan fluorescence, circular dichroism and elution time in size exclusion chromatography during urea denaturation, Decreasing the pH from 7.0 to 5.0 reduced the calculated Delta G(u)(buff) from 8.9 to 4.2 kcal moI(-1), which correlates with an increased rate of pore formation previously observed over the same pH range, It is proposed that the lowered surface pH of biological membranes reduces the stability of alpha HL thereby modulating the rate of pore formation. (C) 1999 Federation of European Biochemical Societies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Escherichia coli Shiga toxigênica (STEC) e E. coli Attaching- effacing (AEEC) têm sido associadas à doença diarréica em cachorros. Entre janeiro e dezembro de 2006, 92 cepas de E. coli isoladas de 25 cachorros diarréicos foram examinadas. As cepas foram analisadas para a detecção dos genes produtores de Shiga toxina (stx 1 e stx 2) e da intimina (eae). Por meio de PCR foi observado que sete cepas (7,6%) portavam o gene stx 1, cinco cepas (5,4%) carregavam o gene stx 2 e nenhum cepa apresentou ambos os genes associados. Nove cepas de E. coli (9,8%) apresentaram o gene eae isoladamente. Treze das cepas (62,0%) que apresentaram os genes stx ou eae também apresentaram a produção de a hemolisina. As cepas que apresentaram genes de virulência foram também examinadas em relação à resistência a 12 agentes antimicrobianos. As resistências mais comuns foram para cefalotina (85,7%), estreptomicina (81,0%), amoxicilina (71,4%) e gentamicina (71,4%).
Resumo:
The structural specificity of alpha-PMTX, a novel peptide toxin derived from wasp venom has been studied on the neuromuscular synapse in the walking leg of the lobster. alpha-PMTX is known to induce repetitive action potentials in the presynaptic axon due to sodium channel inactivation. We synthesized 29 analogs of alpha-PMTX by substituting one or two amino acids and compared threshold concentrations of these mutant toxins for inducing repetitive action potentials. In 13 amino acid residues of alpha-PMTX, Arg-1, Lys-3 and Lys-12 regulate the toxic activity because substitution of these basic amino acid residues with other amino acid residues greatly changed the potency. Determining the structure-activity relationships of PMTXs will help clarifying the molecular mechanism of sodium channel inactivation. (C) 2000 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
Aims: To determine the prevalence and molecular characteristics of Shiga toxin-producing Escherichia coli (STEC) isolates from bovine mastitic milk in Brazil.Methods and Results: A total of 2144 milk samples from dairy cattle showing mastitis were screened for the presence of E. coli. A total of 182 E. coli isolates were selected and examined. All were subjected to dot blot analysis using the CVD419 probe for the detection of the enterohaemolysin (hly) gene, and to a multiplex PCR for the detection of stx1, stx2 and eaeA genes. STEC were isolated from 22 (12.08%) milk samples. All the STEC isolates were tested for sensibility to 10 antimicrobials; the resistances most commonly observed were to cephalothin (86.3%), tetracycline (63.6%) and doxycycline (63.6%).Conclusion: STEC isolates were found in bovine mastitic milk in Brazil.Significance and Impact of the Study: STEC isolates from mastitic milk were potentially pathogenic for human in that they belonged to serogroups associated with diarrhoea and haemolytic-uraemic syndrome, some of them were stx2, eaeA and hly positive.
Resumo:
We studied the effects of a wasp toxin beta-pompilidotoxin (beta-PMTX) on rat hippocampal CA1 interneurons by the current-clamp technique. The firing patterns of pyramidal neurons and pyramidale interneurons were not affected by beta-PMTX, but in oriens and radiatum interneurons, beta-PMTX converted the action potentials to prolonged depolarizing potentials by slowing the inactivation of Na+ channels. In lacunosum moleculare interneurons, beta-PMTX induced initial bursting spikes followed by block of succeeding spikes. Comparison of beta-PMTX with a sea anemone toxin, ATX 11, revealed that ATX 11 altered the firing properties of pyramidal neurons and pyramidale interneurons that were unchanged by beta-PMTX. Our results suggest that beta-PMTX modulates Na+ currents in CAl interneurons differently in various CAl neurons and the toxin is useful to classify Na+ channel subtypes. (C) 2002 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
Pompilidotoxins (PMTXs), derived from the venom of solitary wasp has been known to facilitate synaptic transmission in the lobster neuromuscular junction, and a recent further study from rat trigeminal neurons revealed that the toxin slows Na+ channel inactivation without modifying activation process. Here we report that beta -PMTX modifies rat brain type II Na+ channel alpha -subunit (rBII) expressed in human embryonic kidney cells but fails to act on the rat heart alpha -subunit (rH1) at similar concentrations. We constructed a series of chimeric mutants of rBII and rH1 Na+ channels and compared modification of the steady-state Na+ currents by beta -PMTX. We found that a difference in a single amino acid between Glu-1616 in rBII and Gln-1615 in rH1 at the extracellular loop of D4S3-S4 is crucial for the action of beta -PMTX. PMTXs, which are small peptides with 13 amino acids, would be a potential tool for exploring a new functional moiety of Na+ channels.
Resumo:
To investigate the role of the N-terminal region in the lytic mechanism of the pore-forming toxin sticholysin II (St II), we studied the conformational and functional properties of peptides encompassing the first 30 residues of the protein. Peptides containing residues 1-30 (P1-30) and 11-30 (P11-30) were synthesized and their conformational properties were examined in aqueous solution as a function of peptide concentration, pH, ionic strength, and addition of the secondary structure-inducing solvent trifluoroethanol (TFE). CD spectra showed that increasing concentration, pH, and ionic strength led to aggregation of P1-30; as a consequence, the peptide acquired beta-sheet conformation. In contrast, P11-30 exhibited practically no conformational changes under the same conditions, remaining essentially structureless. Moreover, this peptide did not undergo aggregation. These differences clearly point to the modulating effect of the first 10 hydrophobic residues on the peptides aggregation and conformational properties. In TFE both the first ten hydrophobic peptides acquired alpha-helical conformation, albeit to a different extent, P11-30 displayed lower alpha-helical content. P1-30 presented a larger-fraction of residues in alpha-helical conformation in TFE than that found in St II's crystal structure for that portion of the protein. Since TFE mimics the membrane em,, such increase in helical content could also occur upon toxin binding to membranes and represent a step in the mechanism of pore formation. The peptides conformational properties correlated well with their functional behaviour. Thus, P1-30 exhibited much higher hemolytic activity than P11-30. In addition, P11-30 was able to block the toxin's hemolytic activity. The size of pores formed in red blood cells by P 1-30 was estimated by measuring the permeability PEGs of different molecular mass. The pore radius (0.95 +/- 0.01 nm) was very similar to that of the PEGs of different pore formed by the toxin. The results demonstrate that the synthetic peptide P1-30 is a good model of St 11 conformation and function and emphasize the contribution of the toxin's N-terminal region, and, in particular, the hydrophobic residues 1-10 to pore formation. (c) 2005 Wiley Periodicals, Inc.
Resumo:
A novel chemical subclass of toxin, [1-(3-diazenylphenyl) ethanol]iron, was identified among the compounds present in the web of the spider Nephila clavipes. This type of compound is not common among natural products, mainly in spider-venom toxins; it was shown to be a potent paralytic and/or lethal toxin applied by the spider over its web to ensure prey capture only by topical application. The structure was elucidated by means of ESI mass spectrometry, H-1-NMR spectroscopy, high-resolution (HR) mass spectrometry, and ICP spectrometry. The structure of [1-( 3-diazenylphenyl)ethanol] iron and the study of its insecticidal action may be used as a starting point for the development of new drugs for pest control in agriculture.