864 resultados para Time-varying Constraints
Resumo:
In this paper, a new method for characterizing the newborn heart rate variability (HRV) is proposed. The central of the method is the newly proposed technique for instantaneous frequency (IF) estimation specifically designed for nonstationary multicomponen signals such as HRV. The new method attempts to characterize the newborn HRV using features extracted from the time–frequency (TF) domain of the signal. These features comprise the IF, the instantaneous bandwidth (IB) and instantaneous energy (IE) of the different TF components of the HRV. Applied to the HRV of both normal and seizure suffering newborns, this method clearly reveals the locations of the spectral peaks and their time-varying nature. The total energy of HRV components, ET and ratio of energy concentrated in the low-frequency (LF) to that in high frequency (HF) components have been shown to be significant features in identifying the HRV of newborn with seizures.
Resumo:
How speech is separated perceptually from other speech remains poorly understood. In a series of experiments, perceptual organisation was probed by presenting three-formant (F1+F2+F3) analogues of target sentences dichotically, together with a competitor for F2 (F2C), or for F2+F3, which listeners must reject to optimise recognition. To control for energetic masking, the competitor was always presented in the opposite ear to the corresponding target formant(s). Sine-wave speech was used initially, and different versions of F2C were derived from F2 using separate manipulations of its amplitude and frequency contours. F2Cs with time-varying frequency contours were highly effective competitors, whatever their amplitude characteristics, whereas constant-frequency F2Cs were ineffective. Subsequent studies used synthetic-formant speech to explore the effects of manipulating the rate and depth of formant-frequency change in the competitor. Competitor efficacy was not tuned to the rate of formant-frequency variation in the target sentences; rather, the reduction in intelligibility increased with competitor rate relative to the rate for the target sentences. Therefore, differences in speech rate may not be a useful cue for separating the speech of concurrent talkers. Effects of competitors whose depth of formant-frequency variation was scaled by a range of factors were explored using competitors derived either by inverting the frequency contour of F2 about its geometric mean (plausibly speech-like pattern) or by using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Competitor efficacy depended on the overall depth of frequency variation, not depth relative to that for the other formants. Furthermore, the triangle-wave competitors were as effective as their more speech-like counterparts. Overall, the results suggest that formant-frequency variation is critical for the across-frequency grouping of formants but that this grouping does not depend on speech-specific constraints.
Resumo:
How speech is separated perceptually from other speech remains poorly understood. In a series of experiments, perceptual organisation was probed by presenting three-formant (F1+F2+F3) analogues of target sentences dichotically, together with a competitor for F2 (F2C), or for F2+F3, which listeners must reject to optimise recognition. To control for energetic masking, the competitor was always presented in the opposite ear to the corresponding target formant(s). Sine-wave speech was used initially, and different versions of F2C were derived from F2 using separate manipulations of its amplitude and frequency contours. F2Cs with time-varying frequency contours were highly effective competitors, whatever their amplitude characteristics, whereas constant-frequency F2Cs were ineffective. Subsequent studies used synthetic-formant speech to explore the effects of manipulating the rate and depth of formant-frequency change in the competitor. Competitor efficacy was not tuned to the rate of formant-frequency variation in the target sentences; rather, the reduction in intelligibility increased with competitor rate relative to the rate for the target sentences. Therefore, differences in speech rate may not be a useful cue for separating the speech of concurrent talkers. Effects of competitors whose depth of formant-frequency variation was scaled by a range of factors were explored using competitors derived either by inverting the frequency contour of F2 about its geometric mean (plausibly speech-like pattern) or by using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Competitor efficacy depended on the overall depth of frequency variation, not depth relative to that for the other formants. Furthermore, the triangle-wave competitors were as effective as their more speech-like counterparts. Overall, the results suggest that formant-frequency variation is critical for the across-frequency grouping of formants but that this grouping does not depend on speech-specific constraints. © Springer Science+Business Media New York 2013.
Resumo:
Due to the variability and stochastic nature of wind power system, accurate wind power forecasting has an important role in developing reliable and economic power system operation and control strategies. As wind variability is stochastic, Gaussian Process regression has recently been introduced to capture the randomness of wind energy. However, the disadvantages of Gaussian Process regression include its computation complexity and incapability to adapt to time varying time-series systems. A variant Gaussian Process for time series forecasting is introduced in this study to address these issues. This new method is shown to be capable of reducing computational complexity and increasing prediction accuracy. It is further proved that the forecasting result converges as the number of available data approaches innite. Further, a teaching learning based optimization (TLBO) method is used to train the model and to accelerate
the learning rate. The proposed modelling and optimization method is applied to forecast both the wind power generation of Ireland and that from a single wind farm to show the eectiveness of the proposed method.
Resumo:
Li-ion batteries have been widely used in electric vehicles, and battery internal state estimation plays an important role in the battery management system. However, it is technically challenging, in particular, for the estimation of the battery internal temperature and state-ofcharge (SOC), which are two key state variables affecting the battery performance. In this paper, a novel method is proposed for realtime simultaneous estimation of these two internal states, thus leading to a significantly improved battery model for realtime SOC estimation. To achieve this, a simplified battery thermoelectric model is firstly built, which couples a thermal submodel and an electrical submodel. The interactions between the battery thermal and electrical behaviours are captured, thus offering a comprehensive description of the battery thermal and electrical behaviour. To achieve more accurate internal state estimations, the model is trained by the simulation error minimization method, and model parameters are optimized by a hybrid optimization method combining a meta-heuristic algorithm and the least square approach. Further, timevarying model parameters under different heat dissipation conditions are considered, and a joint extended Kalman filter is used to simultaneously estimate both the battery internal states and time-varying model parameters in realtime. Experimental results based on the testing data of LiFePO4 batteries confirm the efficacy of the proposed method.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
This dissertation contains four essays that all share a common purpose: developing new methodologies to exploit the potential of high-frequency data for the measurement, modeling and forecasting of financial assets volatility and correlations. The first two chapters provide useful tools for univariate applications while the last two chapters develop multivariate methodologies. In chapter 1, we introduce a new class of univariate volatility models named FloGARCH models. FloGARCH models provide a parsimonious joint model for low frequency returns and realized measures, and are sufficiently flexible to capture long memory as well as asymmetries related to leverage effects. We analyze the performances of the models in a realistic numerical study and on the basis of a data set composed of 65 equities. Using more than 10 years of high-frequency transactions, we document significant statistical gains related to the FloGARCH models in terms of in-sample fit, out-of-sample fit and forecasting accuracy compared to classical and Realized GARCH models. In chapter 2, using 12 years of high-frequency transactions for 55 U.S. stocks, we argue that combining low-frequency exogenous economic indicators with high-frequency financial data improves the ability of conditionally heteroskedastic models to forecast the volatility of returns, their full multi-step ahead conditional distribution and the multi-period Value-at-Risk. Using a refined version of the Realized LGARCH model allowing for time-varying intercept and implemented with realized kernels, we document that nominal corporate profits and term spreads have strong long-run predictive ability and generate accurate risk measures forecasts over long-horizon. The results are based on several loss functions and tests, including the Model Confidence Set. Chapter 3 is a joint work with David Veredas. We study the class of disentangled realized estimators for the integrated covariance matrix of Brownian semimartingales with finite activity jumps. These estimators separate correlations and volatilities. We analyze different combinations of quantile- and median-based realized volatilities, and four estimators of realized correlations with three synchronization schemes. Their finite sample properties are studied under four data generating processes, in presence, or not, of microstructure noise, and under synchronous and asynchronous trading. The main finding is that the pre-averaged version of disentangled estimators based on Gaussian ranks (for the correlations) and median deviations (for the volatilities) provide a precise, computationally efficient, and easy alternative to measure integrated covariances on the basis of noisy and asynchronous prices. Along these lines, a minimum variance portfolio application shows the superiority of this disentangled realized estimator in terms of numerous performance metrics. Chapter 4 is co-authored with Niels S. Hansen, Asger Lunde and Kasper V. Olesen, all affiliated with CREATES at Aarhus University. We propose to use the Realized Beta GARCH model to exploit the potential of high-frequency data in commodity markets. The model produces high quality forecasts of pairwise correlations between commodities which can be used to construct a composite covariance matrix. We evaluate the quality of this matrix in a portfolio context and compare it to models used in the industry. We demonstrate significant economic gains in a realistic setting including short selling constraints and transaction costs.
Resumo:
This thesis studies the field of asset price bubbles. It is comprised of three independent chapters. Each of these chapters either directly or indirectly analyse the existence or implications of asset price bubbles. The type of bubbles assumed in each of these chapters is consistent with rational expectations. Thus, the kind of price bubbles investigated here are known as rational bubbles in the literature. The following describes the three chapters. Chapter 1: This chapter attempts to explain the recent US housing price bubble by developing a heterogeneous agent endowment economy asset pricing model with risky housing, endogenous collateral and defaults. Investment in housing is subject to an idiosyncratic risk and some mortgages are defaulted in equilibrium. We analytically derive the leverage or the endogenous loan to value ratio. This variable comes from a limited participation constraint in a one period mortgage contract with monitoring costs. Our results show that low values of housing investment risk produces a credit easing effect encouraging excess leverage and generates credit driven rational price bubbles in the housing good. Conversely, high values of housing investment risk produces a credit crunch characterized by tight borrowing constraints, low leverage and low house prices. Furthermore, the leverage ratio was found to be procyclical and the rate of defaults countercyclical consistent with empirical evidence. Chapter 2: It is widely believed that financial assets have considerable persistence and are susceptible to bubbles. However, identification of this persistence and potential bubbles is not straightforward. This chapter tests for price bubbles in the United States housing market accounting for long memory and structural breaks. The intuition is that the presence of long memory negates price bubbles while the presence of breaks could artificially induce bubble behaviour. Hence, we use procedures namely semi-parametric Whittle and parametric ARFIMA procedures that are consistent for a variety of residual biases to estimate the value of the long memory parameter, d, of the log rent-price ratio. We find that the semi-parametric estimation procedures robust to non-normality and heteroskedasticity errors found far more bubble regions than parametric ones. A structural break was identified in the mean and trend of all the series which when accounted for removed bubble behaviour in a number of regions. Importantly, the United States housing market showed evidence for rational bubbles at both the aggregate and regional levels. In the third and final chapter, we attempt to answer the following question: To what extend should individuals participate in the stock market and hold risky assets over their lifecycle? We answer this question by employing a lifecycle consumption-portfolio choice model with housing, labour income and time varying predictable returns where the agents are constrained in the level of their borrowing. We first analytically characterize and then numerically solve for the optimal asset allocation on the risky asset comparing the return predictability case with that of IID returns. We successfully resolve the puzzles and find equity holding and participation rates close to the data. We also find that return predictability substantially alter both the level of risky portfolio allocation and the rate of stock market participation. High factor (dividend-price ratio) realization and high persistence of factor process indicative of stock market bubbles raise the amount of wealth invested in risky assets and the level of stock market participation, respectively. Conversely, rare disasters were found to bring down these rates, the change being severe for investors in the later years of the life-cycle. Furthermore, investors following time varying returns (return predictability) hedged background risks significantly better than the IID ones.
Resumo:
Several decision and control tasks in cyber-physical networks can be formulated as large- scale optimization problems with coupling constraints. In these "constraint-coupled" problems, each agent is associated to a local decision variable, subject to individual constraints. This thesis explores the use of primal decomposition techniques to develop tailored distributed algorithms for this challenging set-up over graphs. We first develop a distributed scheme for convex problems over random time-varying graphs with non-uniform edge probabilities. The approach is then extended to unknown cost functions estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs), which are of great interest in smart grid control and cooperative robotics. We propose a distributed methodological framework to compute a feasible solution to the original MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex problems. Monte Carlo simulations highlight that the approach represents a substantial breakthrough with respect to the state of the art, thus representing a valuable solution for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders decomposition algorithm for asynchronous unreliable networks. The framework has been then used as starting point to develop distributed methodologies for a microgrid optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic set-up with renewable energy sources, and show a case study with samples generated using Generative Adversarial Networks (GANs). We then introduce a software toolbox named ChoiRbot, based on the novel Robot Operating System 2, and show how it facilitates simulations and experiments in distributed multi-robot scenarios. Finally, we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a distributed method inspired to the approach of general MILPs, and show the efficacy through simulations and experiments in ChoiRbot with ground and aerial robots.
Resumo:
In this paper, we present a fuzzy approach to the Reed-Frost model for epidemic spreading taking into account uncertainties in the diagnostic of the infection. The heterogeneities in the infected group is based on the clinical signals of the individuals (symptoms, laboratorial exams, medical findings, etc.), which are incorporated into the dynamic of the epidemic. The infectivity level is time-varying and the classification of the individuals is performed through fuzzy relations. Simulations considering a real problem with data of the viral epidemic in a children daycare are performed and the results are compared with a stochastic Reed-Frost generalization
Resumo:
The structural engineering community in Brazil faces new challenges with the recent occurrence of high intensity tornados. Satellite surveillance data shows that the area covering the south-east of Brazil, Uruguay and some of Argentina is one of the world most tornado-prone areas, second only to the infamous tornado alley in central United States. The design of structures subject to tornado winds is a typical example of decision making in the presence of uncertainty. Structural design involves finding a good balance between the competing goals of safety and economy. This paper presents a methodology to find the optimum balance between these goals in the presence of uncertainty. In this paper, reliability-based risk optimization is used to find the optimal safety coefficient that minimizes the total expected cost of a steel frame communications tower, subject to extreme storm and tornado wind loads. The technique is not new, but it is applied to a practical problem of increasing interest to Brazilian structural engineers. The problem is formulated in the partial safety factor format used in current design codes, with all additional partial factor introduced to serve as optimization variable. The expected cost of failure (or risk) is defined as the product of a. limit state exceedance probability by a limit state exceedance cost. These costs include costs of repairing, rebuilding, and paying compensation for injury and loss of life. The total expected failure cost is the sum of individual expected costs over all failure modes. The steel frame communications, tower subject of this study has become very common in Brazil due to increasing mobile phone coverage. The study shows that optimum reliability is strongly dependent on the cost (or consequences) of failure. Since failure consequences depend oil actual tower location, it turn,,; out that different optimum designs should be used in different locations. Failure consequences are also different for the different parties involved in the design, construction and operation of the tower. Hence, it is important that risk is well understood by the parties involved, so that proper contracts call be made. The investigation shows that when non-structural terms dominate design costs (e.g, in residential or office buildings) it is not too costly to over-design; this observation is in agreement with the observed practice for non-optimized structural systems. In this situation, is much easier to loose money by under-design. When by under-design. When structural material cost is a significant part of design cost (e.g. concrete dam or bridge), one is likely to lose significantmoney by over-design. In this situation, a cost-risk-benefit optimization analysis is highly recommended. Finally, the study also shows that under time-varying loads like tornados, the optimum reliability is strongly dependent on the selected design life.
Resumo:
Identification, prediction, and control of a system are engineering subjects, regardless of the nature of the system. Here, the temporal evolution of the number of individuals with dengue fever weekly recorded in the city of Rio de Janeiro, Brazil, during 2007, is used to identify SIS (susceptible-infective-susceptible) and SIR (susceptible-infective-removed) models formulated in terms of cellular automaton (CA). In the identification process, a genetic algorithm (GA) is utilized to find the probabilities of the state transition S -> I able of reproducing in the CA lattice the historical series of 2007. These probabilities depend on the number of infective neighbors. Time-varying and non-time-varying probabilities, three different sizes of lattices, and two kinds of coupling topology among the cells are taken into consideration. Then, these epidemiological models built by combining CA and GA are employed for predicting the cases of sick persons in 2008. Such models can be useful for forecasting and controlling the spreading of this infectious disease.
Resumo:
Aims. We investigate the time-varying patterns in line profiles, V/R, and radial velocity of the Be star HD 173948 (lambda Pavonis). Methods. Time series analyses of radial velocity, V/R, and line profiles of He I, Fe II, and Si II were performed with the Cleanest algorithm. An estimate of the stellar rotation frequency was derived from the stellar mass and radius in the Roche limit by adopting an aspect angle i derived from the fittings of non-LTE model spectra affected by rotation. The projected rotation velocity, necessary as input for the spectral synthesis procedure, was evaluated from the Fourier transform of the rotation profiles of all neutral helium lines in the optical range. Results. Emission episodes in Balmer and He i lines, as well as V/R cyclic variations, are reported for spectra observed in year 1999, followed by a relatively quiescent phase (2000) and then again a new active epoch (2001). From time series analyses of line profiles, radial velocities, and V/R ratios, four signals with high confidence levels are detected: nu(1) = 0.17 +/- 0.02, nu(2) = 0.49 +/- 0.05, nu(3) = 0.82 +/- 0.03, and nu(4) = 1.63 +/- 0.04 c/d. We interpret nu 4 as a non-radial pulsation g-mode, nu 3 as a signal related to the orbital timescale of ejected material, which is near the theoretical rotation frequency 0.81 c/d inferred from the fitting of the models taken into account for gravity darkening. The signals nu(1) and nu(2) are viewed as aliases of nu(3) and nu(4).
Resumo:
In this paper, an extended impedance-based fault-location formulation for generalized distribution systems is presented. The majority of distribution feeders are characterized by having several laterals, nonsymmetrical lines, highly unbalanced operation, and time-varying loads. These characteristics compromise traditional fault-location methods performance. The proposed method uses only local voltages and currents as input data. The current load profile is obtained through these measurements. The formulation considers load variation effects and different fault types. Results are obtained from numerical simulations by using a real distribution system from the Electrical Energy Distribution State Company of Rio Grande do Sul (CEEE-D), Southern Brazil. Comparative results show the technique robustness with respect to fault type and traditional fault-location problems, such as fault distance, resistance, inception angle, and load variation. The formulation was implemented as embedded software and is currently used at CEEE-D`s distribution operation center.
Resumo:
One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.