901 resultados para Threshold regression
Resumo:
It is commonly perceived that variables ‘measuring’ different dimensions of teaching (construed as instructional attributes) used in student evaluation of teaching (SET) questionnaires are so highly correlated that they pose a serious multicollinearity problem for quantitative analysis including regression analysis. Using nearly 12000 individual student responses to SET questionnaires and ten key dimensions of teaching and 25 courses at various undergraduate and postgraduate levels for multiple years at a large Australian university, this paper investigates whether this is indeed the case and if so under what circumstances. This paper tests this proposition first by examining variance inflation factors (VIFs), across courses, levels and over time using individual responses; and secondly by using class averages. In the first instance, the paper finds no sustainable evidence of multicollinearity. While, there were one or two isolated cases of VIFs marginally exceeding the conservative threshold of 5, in no cases did the VIFs for any of the instructional attributes come anywhere close to the high threshold value of 10. In the second instance, however, the paper finds that the attributes are highly correlated as all the VIFs exceed 10. These findings have two implications: (a) given the ordinal nature of the data ordered probit analysis using individual student responses can be employed to quantify the impact of instructional attributes on TEVAL score; (b) Data based on class averages cannot be used for probit analysis. An illustrative exercise using level 2 undergraduate courses data suggests higher TEVAL scores depend first and foremost on improving explanation, presentation, and organization of lecture materials.
Resumo:
This article situates the development of the Threshold Learning Outcomes for law in relation to broader national and international trends in legal education and higher education regulation. It also addresses the significance of recent changes to the Australian higher education regulatory landscape catalysed by the current Government's commitment to reducing regulation and red tape for the sector.
Cooperative choice and its framing effect under threshold uncertainty in a provision point mechanism
Resumo:
This paper explores how threshold uncertainty affects cooperative behaviors in the provision of public goods and the prevention of public bads. The following facts motivate our study. First, environmental (resource) problems are either framed as public bads prevention or public goods provision. Second, the occurrence of these problems is characterized by thresholds that are interchangeably represented as "nonconvexity," "bifurcation," "bi-stability," or "catastrophes." Third, the threshold location is mostly unknown. We employ a provision point mechanism with threshold uncertainty and analyze the responses of cooperative behaviors to uncertainty and to the framing for each type of social preferences categorized by a value orientation test. We find that aggregate framing effects are negligible, although the response to the frame is the opposite depending on the type of social preferences. "Cooperative" subjects become more cooperative in negative frames than in positive frames, whereas "individualistic" subjects are less cooperative in negative frames than in positive ones. This finding implies that the insignificance of aggregate framing effects arises from behavioral asymmetry. We also find that the percentage of cooperative choices non-monotonically varies with the degree of threshold uncertainty, irrespective of framing and value orientation. Specifically, the degree of cooperation is highest at intermediate levels of threshold uncertainty and decreases as the uncertainty becomes sufficiently large.
Resumo:
Large multisite efforts (e.g., the ENIGMA Consortium), have shown that neuroimaging traits including tract integrity (from DTI fractional anisotropy, FA) and subcortical volumes (from T1-weighted scans) are highly heritable and promising phenotypes for discovering genetic variants associated with brain structure. However, genetic correlations (rg) among measures from these different modalities for mapping the human genome to the brain remain unknown. Discovering these correlations can help map genetic and neuroanatomical pathways implicated in development and inherited risk for disease. We use structural equation models and a twin design to find rg between pairs of phenotypes extracted from DTI and MRI scans. When controlling for intracranial volume, the caudate as well as related measures from the limbic system - hippocampal volume - showed high rg with the cingulum FA. Using an unrelated sample and a Seemingly Unrelated Regression model for bivariate analysis of this connection, we show that a multivariate GWAS approach may be more promising for genetic discovery than a univariate approach applied to each trait separately.
Resumo:
We implemented least absolute shrinkage and selection operator (LASSO) regression to evaluate gene effects in genome-wide association studies (GWAS) of brain images, using an MRI-derived temporal lobe volume measure from 729 subjects scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Sparse groups of SNPs in individual genes were selected by LASSO, which identifies efficient sets of variants influencing the data. These SNPs were considered jointly when assessing their association with neuroimaging measures. We discovered 22 genes that passed genome-wide significance for influencing temporal lobe volume. This was a substantially greater number of significant genes compared to those found with standard, univariate GWAS. These top genes are all expressed in the brain and include genes previously related to brain function or neuropsychiatric disorders such as MACROD2, SORCS2, GRIN2B, MAGI2, NPAS3, CLSTN2, GABRG3, NRXN3, PRKAG2, GAS7, RBFOX1, ADARB2, CHD4, and CDH13. The top genes we identified with this method also displayed significant and widespread post hoc effects on voxelwise, tensor-based morphometry (TBM) maps of the temporal lobes. The most significantly associated gene was an autism susceptibility gene known as MACROD2.We were able to successfully replicate the effect of the MACROD2 gene in an independent cohort of 564 young, Australian healthy adult twins and siblings scanned with MRI (mean age: 23.8±2.2 SD years). Our approach powerfully complements univariate techniques in detecting influences of genes on the living brain.
Resumo:
Background Matrix metalloproteinase-2 (MMP-2) is an endopeptidase that facilitates extracellular matrix remodeling and molecular regulation, and is implicated in tumor metastasis. Type I collagen (Col I) regulates the activation of MMP-2 through both transcriptional and post-transcriptional means; however gaps remain in our understanding of the involvement of collagen-binding ?1 integrins in collagen-stimulated MMP-2 activation. Methods Three ?1 integrin siRNAs were used to elucidate the involvement of ?1 integrins in the Col I-induced MMP-2 activation mechanism. ?1 integrin knockdown was analyzed by quantitative RT-PCR, Western Blot and FACS analysis. Adhesion assay and collagen gel contraction were used to test the biological effects of ?1 integrin abrogation. MMP-2 activation levels were monitored by gelatin zymography. Results All three ?1 integrin siRNAs were efficient at ?1 integrin knockdown and FACS analysis revealed commensurate reductions of integrins ?2 and ?3, which are heterodimeric partners of ?1, but not ?V, which is not. All three ?1 integrin siRNAs inhibited adhesion and collagen gel contraction, however only the siRNA showing the greatest magnitude of ?1 knockdown inhibited Col I-induced MMP-2 activation and reduced the accompanying upregulation of MT1-MMP, suggesting a dose response threshold effect. Re-transfection with codon-swapped ?1 integrin overcame the reduction in MMP-2 activation induced by Col-1, confirming the ?1 integrin target specificity. MMP-2 activation induced by TPA or Concanavalin A (Con A) was not inhibited by ?1 integrin siRNA knockdown. Conclusion Together, the data reveals that strong abrogation of ?1 integrin is required to block MMP-2 activation induced by Col I, which may have implications for the therapeutic targeting of ?1 integrin.
Resumo:
Messenger RNAs (mRNAs) can be repressed and degraded by small non-coding RNA molecules. In this paper, we formulate a coarsegrained Markov-chain description of the post-transcriptional regulation of mRNAs by either small interfering RNAs (siRNAs) or microRNAs (miRNAs). We calculate the probability of an mRNA escaping from its domain before it is repressed by siRNAs/miRNAs via cal- culation of the mean time to threshold: when the number of bound siRNAs/miRNAs exceeds a certain threshold value, the mRNA is irreversibly repressed. In some cases,the analysis can be reduced to counting certain paths in a reduced Markov model. We obtain explicit expressions when the small RNA bind irreversibly to the mRNA and we also discuss the reversible binding case. We apply our models to the study of RNA interference in the nucleus, examining the probability of mRNAs escaping via small nuclear pores before being degraded by siRNAs. Using the same modelling framework, we further investigate the effect of small, decoy RNAs (decoys) on the process of post-transcriptional regulation, by studying regulation of the tumor suppressor gene, PTEN : decoys are able to block binding sites on PTEN mRNAs, thereby educing the number of sites available to siRNAs/miRNAs and helping to protect it from repression. We calculate the probability of a cytoplasmic PTEN mRNA translocating to the endoplasmic reticulum before being repressed by miRNAs. We support our results with stochastic simulations
Resumo:
This study examined the short-term effects of temperature on cardiovascular hospital admissions (CHA) in the largest tropical city in Southern Vietnam. We applied Poisson time-series regression models with Distributed Lag Non-Linear Model (DLNM) to examine the temperature-CHA association while adjusting for seasonal and long-term trends, day of the week, holidays, and humidity. The threshold temperature and added effects of heat waves were also evaluated. The exposure-response curve of temperature-CHA reveals a J-shape relationship with a threshold temperature of 29.6 °C. The delayed effects temperature-CHA lasted for a week (0–5 days). The overall risk of CHA increased 12.9% (RR, 1.129; 95%CI, 0.972–1.311) during heatwave events, which were defined as temperature ≥ the 99th percentile for ≥2 consecutive days. The modification roles of gender and age were inconsistent and non-significant in this study. An additional prevention program that reduces the risk of cardiovascular disease in relation to high temperatures should be developed.
Resumo:
Chemical composition of rainwater changes from sea to inland under the influence of several major factors - topographic location of area, its distance from sea, annual rainfall. A model is developed here to quantify the variation in precipitation chemistry under the influence of inland distance and rainfall amount. Various sites in India categorized as 'urban', 'suburban' and 'rural' have been considered for model development. pH, HCO3, NO3 and Mg do not change much from coast to inland while, SO4 and Ca change is subjected to local emissions. Cl and Na originate solely from sea salinity and are the chemistry parameters in the model. Non-linear multiple regressions performed for the various categories revealed that both rainfall amount and precipitation chemistry obeyed a power law reduction with distance from sea. Cl and Na decrease rapidly for the first 100 km distance from sea, then decrease marginally for the next 100 km, and later stabilize. Regression parameters estimated for different cases were found to be consistent (R-2 similar to 0.8). Variation in one of the parameters accounted for urbanization. Model was validated using data points from the southern peninsular region of the country. Estimates are found to be within 99.9% confidence interval. Finally, this relationship between the three parameters - rainfall amount, coastline distance, and concentration (in terms of Cl and Na) was validated with experiments conducted in a small experimental watershed in the south-west India. Chemistry estimated using the model was in good correlation with observed values with a relative error of similar to 5%. Monthly variation in the chemistry is predicted from a downscaling model and then compared with the observed data. Hence, the model developed for rain chemistry is useful in estimating the concentrations at different spatio-temporal scales and is especially applicable for south-west region of India. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
As the conventional MOSFET's scaling is approaching the limit imposed by short channel effects, Double Gate (DG) MOS transistors are appearing as the most feasible candidate in terms of technology in sub-45nm technology nodes. As the short channel effect in DG transistor is controlled by the device geometry, undoped or lightly doped body is used to sustain the channel. There exits a disparity in threshold voltage calculation criteria of undoped-body symmetric double gate transistors which uses two definitions, one is potential based and the another is charge based definition. In this paper, a novel concept of "crossover point'' is introduced, which proves that the charge-based definition is more accurate than the potential based definition.The change in threshold voltage with body thickness variation for a fixed channel length is anomalous as predicted by potential based definition while it is monotonous for charge based definition.The threshold voltage is then extracted from drain currant versus gate voltage characteristics using linear extrapolation and "Third Derivative of Drain-Source Current'' method or simply "TD'' method. The trend of threshold voltage variation is found same in both the cases which support charge-based definition.
Resumo:
We show that the cubicity of a connected threshold graph is equal to inverted right perpendicularlog(2) alpha inverted left perpendicular, where alpha is its independence number.
Resumo:
As the conventional MOSFETs scaling is approaching the limit imposed by short channel effects, Double Gate (DG) MOS transistors are appearing as the most feasible andidate in terms of technology in sub-45nm technology nodes. As the short channel effect in DG transistor is controlled by the device geometry, undoped or lightly doped body, is used to sustain the channel. There exits a disparity in threshold voltage calculation criteria of undoped-body symmetric double gate transistors which uses two definitions, one is potential based and the another is charge based definition. In this paper, a novel concept of "crossover point" is introduced, which proves that the charge-based definition is more accurate than the potential based definition. The change in threshold voltage with body thickness variation for a fixed channel length is anomalous as predicted by, potential based definition while it is monotonous for change based definition. The threshold voltage is then extracted from drain currant versus gate voltage characteristics using linear extrapolation and "Third Derivative of Drain-Source Current" method or simply "TD" method. The trend of threshold voltage variation is found some in both the cases which support charge-based definition.
Resumo:
Near threshold fatigue crack growth behavior of a high strength steel under different temper levels was investigated. It is found that the observed variations in ΔKth could predominantly be attributed to roughness induced crack closure. The closure-free component of the threshold stress intensity range, ΔKeff,th showed a systematic variation with monotonic yield strength.
Resumo:
Ordinal qualitative data are often collected for phenotypical measurements in plant pathology and other biological sciences. Statistical methods, such as t tests or analysis of variance, are usually used to analyze ordinal data when comparing two groups or multiple groups. However, the underlying assumptions such as normality and homogeneous variances are often violated for qualitative data. To this end, we investigated an alternative methodology, rank regression, for analyzing the ordinal data. The rank-based methods are essentially based on pairwise comparisons and, therefore, can deal with qualitative data naturally. They require neither normality assumption nor data transformation. Apart from robustness against outliers and high efficiency, the rank regression can also incorporate covariate effects in the same way as the ordinary regression. By reanalyzing a data set from a wheat Fusarium crown rot study, we illustrated the use of the rank regression methodology and demonstrated that the rank regression models appear to be more appropriate and sensible for analyzing nonnormal data and data with outliers.
Resumo:
Rank-based inference is widely used because of its robustness. This article provides optimal rank-based estimating functions in analysis of clustered data with random cluster effects. The extensive simulation studies carried out to evaluate the performance of the proposed method demonstrate that it is robust to outliers and is highly efficient given the existence of strong cluster correlations. The performance of the proposed method is satisfactory even when the correlation structure is misspecified, or when heteroscedasticity in variance is present. Finally, a real dataset is analyzed for illustration.