983 resultados para Thermodynamic Properties
Resumo:
We present a comprehensive experimental and theoretical investigation of the thermodynamic properties: specific heat, magnetization, and thermal expansion in the vicinity of the field-induced quantum critical point (QCP) around the lower critical field H-c1 approximate to 2 T in NiCl2-4SC(NH2)(2). A T-3/2 behavior in the specific heat and magnetization is observed at very low temperatures at H = H-c1, which is consistent with the universality class of Bose-Einstein condensation of magnons. The temperature dependence of the thermal expansion coefficient at H-c1 shows minor deviations from the expected T-1/2 behavior. Our experimental study is complemented by analytical calculations and quantum Monte Carlo simulations, which reproduce nicely the measured quantities. We analyze the thermal and the magnetic Gruneisen parameters, which are ideal quantities to identify QCPs. Both parameters diverge at H-c1 with the expected T-1 power law. By using the Ehrenfest relations at the second-order phase transition, we are able to estimate the pressure dependencies of the characteristic temperature and field scales.
Resumo:
[EN]Excess thermodynamic properties VE m and HE m, have been measured for the ternary mixture dodecane + ethyl pentanoate + ethyl ethanoate and for the corresponding binaries dodecane + ethyl pentanoate, dodecane + ethyl ethanoate, ethyl pentanoate + ethyl ethanoate at 298.15 K. All mixtures show endothermic and expansive effects. Experimental results are correlated with a suitable equation whose final form for the excess ternary quantity ME contains the particular contributions of the three binaries (i–j) and a last term corresponding to the ternary, all of them obtained considering fourth-order interactions.
Resumo:
[EN]This paper presents the experimental measurements of isobaric vapor−liquid equilibria (iso-p VLE) and excess volumes (vE) at several temperatures in the interval (288.15 to 328.15) K for six binary systems composed of two alkyl (methyl, ethyl) propanoates and three odd carbon alkanes (C5 to C9). The mixing processes were expansive, vE > 0, with (δvE/δT)p > 0, and endothermic. The installation used to measure the iso-p VLE was improved by controlling three of the variables involved in the experimentation with a PC.
Resumo:
[EN]This work studies the binaries of 1-butyl-X-methylpyridinium tetrafluoroborate [bXmpy][BF4] (X = 2, 3, and 4) with four 1,ω-dichloroalkanes, ω = 1−4, using the results obtained for the mixing properties hE and v E at two temperatures. The three isomers of the ionic liquid (IL) are weakly miscible with the 1,ω-dichloroalkanes when ω ≥ 5 and moderately soluble for ω = 4. The vE s of all the binaries present contractive effects, v E < 0, which are more pronounced with increasing temperature; the variation in vE with ω is positive, although this changes after ω = 4 due to problems of immiscibility
Resumo:
"October 1964."
Resumo:
Chiefly tables.
Resumo:
Mode of access: Internet.
Resumo:
In three series.
Resumo:
Includes bibliographical references (p. 15-16).
Resumo:
Bibliography: p. 13-14.
Resumo:
Supplementary ed. of NBS technical note 154 "and presents the same data in the dimensional units of the British system."
Resumo:
Mode of access: Internet.
Resumo:
The knowledge of thermodynamic high-pressure speed of sound in ionic liquids (ILs) is a crucial way either to study the nature of the molecular interactions, structure and packing effects or to determine other key thermodynamic properties of ILs essential for their applications in any chemical and industrial processes. Herein, we report the speed of sound as a function temperature at pressures up to 101 MPa in four ultrapure ILs: 1-propyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-pentyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, and 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, taking into consideration their relaxation behavior. Additionally, to further improve the reliability of the speed of sound results, the density, isentropic compressibility, and isobaric heat capacity as a function of temperature and pressure are calculated using an acoustic method.