942 resultados para Thermally-modified wood
Resumo:
Maize (Zea mays L.) is a very important cereal to world-wide economy which is also true for Brazil, particularly in the South region. Grain yield and plant height have been chosen as important criteria by breeders and farmers from Santa Catarina State (SC), Brazil. The objective of this work was to estimate genetic-statistic parameters associated with genetic gain for grain yield and plant height, in the first cycle of convergent-divergent half-sib selection in a maize population (MPA1) cultivated by farmers within the municipality of Anchieta (SC). Three experiments were carried out in different small farms at Anchieta using low external agronomic inputs; each experiment represented independent samples of half-sib families, which were evaluated in randomized complete blocks with three replications per location. Significant differences among half-sib families were observed for both variables in all experiments. The expected responses to truncated selection of the 25% better families in each experiment were 5.1, 5.8 and 5.2% for reducing plant height and 3.9, 5.7 and 5.0% for increasing grain yield, respectively. The magnitudes of genetic-statistic parameters estimated evidenced that the composite population MPA1 exhibits enough genetic variability to be used in cyclical process of recurrent selection. There were evidences that the genetic structure of the base population MPA1, as indicated by its genetic variability, may lead to expressive changes in the traits under selection, even under low selection pressure.
Resumo:
The objective of this study was to evaluate the effect of particle size and concentration of poly(F.-caprolactone) and adipate modified starch blend on mineralization in soils with differing textures, comparing it with polyethylene under the same experimental conditions. Two soil types were used: a Kandiudalfic Eutrudox with a clayey texture and an Arenic Hapludult with a sandy texture. The two different plastic specimens were incorporated in the form of plastic films with three increasing particle sizes and six doses, from 0 to 2.5 mg C g(-1) soil. Each plastic dose was incorporated into 200 g of soil placed in a hermetically closed jar at 28 degrees C, and incubated for a 120-day period to determine CO(2) evolution. Once again it was confirmed that polyethylene is almost non-biodegradable, in contrast to PCL/S, which can be defined as a biodegradable material. Soil texture affected the mineralization kinetics of the plastic specimens, with higher values for the clayey soil. No changes in soil microbial biomass-C or -N were observed by adding polyethylene and PCL/S to the soil. Also, no significant differences were observed on seed emergence and development of rice seedlings (Oryza sativa L.) in plastic modified soil. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This article presents the results obtained from an experimental device designed for the accurate determination of wood/water relationship on microsamples. The moisture content of the sample is measured with a highly sensitive electronic microbalance and two dimensions of the sample are collected continuously without contact using high-speed laser scan micrometers. The whole device is placed in a climatic chamber. The microsamples investigated were prepared with a diamond wire saw. The unique ability of this device to work with small samples allowed normal, opposite, and reaction wood to be characterized separately. Experiments were carried out on three wood species (beech, spruce, and poplar). In the case of beech, a deviation from the linear relation between tangential shrinkage and moisture content between 40 and 20% is particularly noticeable for the first desorption. A localized collapse of ray cells could explain this result. Compared to normal wood, an important longitudinal shrinkage and a low tangential shrinkage were observed in compression wood of spruce. Both the tension wood and opposite wood of poplar exhibit a high longitudinal shrinkage, but no significant difference between the three types of wood is noticeable in the tangential direction.
Resumo:
This paper provides insights into liquid free water dynamics in wood vessels based on Lattice Boltzmann experiments. The anatomy of real wood samples was reconstructed from systematic 3-D analyses of the vessel contours derived from successive microscopic images. This virtual vascular system was then used to supply fluid-solid boundary conditions to a two-phase Lattice Boltzmann scheme and investigate capillary invasion of this hydrophilic porous medium. Behavior of the liquid phase was strongly dependent on anatomical features, especially vessel bifurcations and reconnections. Various parameters were examined in numerical experiments with ideal vessel bifurcations, to clarify our interpretation of these features. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Eucalyptus camaldulensis has great importance in Brazil because of their phenotypic plasticity for different environmental conditions, as soils, altitudes and rainfall. This study is an investigation of a base population of E. camaldulensis from Australia through a progeny test implanted in Selviria, MS. The trial was established in a randomized block design, with 25 families and 60 replications of single tree plots. Genetic parameters for anatomic traits and volume shrinkage were estimated, as well as their correlations with wood basic density. No significant differences among progenies were observed for the traits studied. The additive genetic variation coefficient at individual and among progeny levels ranged from low (0.26%) to high (16.98%). The narrow sense heritability at individual and family means levels also ranged from low (0.01) to high (0.87). This indicates that some traits are under strong genetic control and can be improved by selection. In the present situation, in order to attain the highest genetic gains, the sequential selection among and within progeny would be recommended.
Resumo:
Grafts of biological tissues have been used since the 1960s as an alternative to the mechanical heart prostheses. Nowadays, the most consolidated treatment to bovine pericardial (BP) bioprostheses is the crosslinking with glutaraldehyde (GA), although GA may induce calcification in vivo. In previous work, our group demonstrated that electron beam irradiation applied to lyophilized BP in the absence of oxygen promoted crosslinks among collagen fibers of BP tissue. In this work, the incorporation of silk fibroin (SF) and chitosan (CHIT) in the BP not treated with GA was studied. The samples were irradiated and then analyzed for their cytotoxicity and the ability of adhesion and growth of endothelial cells. Initially, all samples showed cytotoxicity. However, after a few washing cycles, the cytotoxicity due to acetic acid and ethanol residues was removed from the biomaterial making it suitable for the biofunctional test. The samples modified with SF/CHIT and electron beam irradiated favored the adhesion and growth of endothelial cells throughout the tissue.
Resumo:
PEGylation is a strategy that has been used to improve the biochemical properties of proteins and their physical and thermal stabilities. In this study, hen egg-white lysozyme (EC 3.2.1.17; LZ) was modified with methoxypolyethylene glycol-p-nitrophenyl carbonate (mPEG-pNP, MW 5000). This PEGylation of LZ produced conjugates that retained full enzyme activity with glycol chitosan, independent of degree of enzyme modification; its biological activity with the substrate Micrococcus lysodeikticus was altered according to its degree of modification. The conjugate obtained with a low degree of mPEG-pNP/NH(2) modification was studied by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), demonstrating a spectral peak at m/z 19,988 Da with 77% of its original enzymatic activity. Spectroscopic studies of Fourier transform infrared (FIR) and circular dichroism (CD) did not show any relevant differences in protein structure between the native and conjugate LZ. Studies of the effects of pH and temperature on PEGylated LZ indicated that the conjugate was active over a broad pH range, stable at 50 degrees C, and demonstrated resistance to proteolytic degradation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
PEGylation is one of the most promising and extensively studied strategies for improving the pharmacological properties of proteins as well as their physical and thermal stability. Purified lysozyme obtained from hen egg white by batch mode was modified by PEGylation with methoxypolyethyleneglycol succinimidyl succinato (mPEG-SS, MW 5000). The conjugates produced retained full enzyme activity with the substrate glycol chitosan, independent of degree of enzyme modification, although lysozyme activity with the substrate Micrococcus lysodeikticus was altered according to the degree of modification. The conjugate with a low degree of modification by mPEG-SS retained 67% of its enzyme activity with the M. lysodeikticus substrate. The mPEG-SS was also shown to be a highly reactive polymer. The effects of pH and temperature on PEGylated lysozymes indicated that the conjugate was active over a wide pH range and was stable up to 50 degrees C. This conjugate also showed resistance to proteolytic degradation, remained stable in human serum, and displayed greater antimicrobial activity than native lysozyme against Gram-negative bacteria.
Resumo:
This article reports on modified chitosan as an alternative substance for protecting loss of volatile compounds during freeze drying. Moisture sorption isotherms of freeze-dried D-limonene emulsions in modified chitosan were determined at 15, 25, and 35 degrees C. The data were adjusted to the GAB model. Maltodextrin was used in a parallel experiment. Flavor released from microcapsules was measured. The monolayer humidity, the sorption heat, the diffusivity coefficients, and the surface area of freeze-dried D-limonene emulsions were determined.
Resumo:
Feijo, T.S., Cardozo, SX, Daleprane, J.B., Sabaa Srur, A.U.O. & Boaventura, G.T. [Evaluation of the influence of the proteinic quality of the genetically modified and organic soy beans in the growth of two generations of rats Wistar.] Avaliacao da influencia da qualidade proteica da soja geneticamente modificada e organica no crescimento de duas geracoes de ratos Wistar. Revista Brasileira de Medicina Veterinaria, 31(3):139-144, 2009. Programa de Pos-Graduacao em Patologia, Hospital Universitario Antonio Pedro. Centro de Ciencias Medicas, Universidade Federal Fluminense. Rua Marques do Parana, 303, Niteroi, RJ 24030-210, Brasil. E-mail: sergian@ufnj.br Sixty four Wistar rats, male of two consecutive generations determined as F(0) and F(1) were used to study the cumulative effect of two variety soy beans, cultivated with organic seasoning and genetically modified, The animals of each generation were divided into three groups of eight rats each fed on diets consisted of organic soy, soy genetically modified and casein respectively. All the animals received water and the diet ad libitum for period of 28 days. Where the diet consumption and the animals weight were evaluated. After statistic analysis of the results no expressive differences were observed on diet consumption, weight variation, protein efficient ratio and food efficiency ratio on same group of animals in the different generations. On the other hand, significant difference was found on final proteinic retention on animal descendants of the same groups; however of different generations. With this, the supplementation of organic soy with L-cistin provided better avail of this protein in relation to the protein of the soy genetically modified. However, this supplementation did not reveal efficiency in keeping the proteinic employment from one generation to another one, since soy varieties presented better performance on F(0) generation when compared with F(1).
Resumo:
The beta-carbolines 1-methyl-9H-pyrido [3,4-b]indole and 9H-pyrido[3,4b]indole have been implicated as having causative roles in a number of human diseases, such as Parkinson`s disease and cancer. As they can be formed during the heating of protein-rich food, a number of analytical methodologies have been proposed for their detection and quantification in foodstuff For this purpose, LC-MS and LC-MS/MS have emerged as the most specific analytical methods, and the quantification is based on the occurrence of unusual ions, such as [M+H-(H(center dot))](+) and [M + H-2H](+). In this study, we have investigated the formation of these ions by accurate-mass electrospray MS/MS and demonstrated that these ions are formed from gas-phase ion-molecule reactions between water vapor present in the collision cell and the protonated molecule of 1-methyl-9H-pyrido [3,4-b]indole and 9H-pyrido[3,4b]indole. Although this reaction has been previously described for heterocyclic amine ions, it has been overlooked in the most of recent LC-MS and LC-MS/MS studies, and no complete data of the fragmentation are reported. Our results demonstrate that additional attention should be given with respect to eliminating water vapor residues in the mass spectrometer when analysis of beta-carbolines is performed, as this residue may affect the reliability in the results of quantification.
Resumo:
The present work evaluates both in vitro and in vivo antitumor activity of BPB-modified BthTX-I and its cationic synthetic peptide derived from the 115-129 C-terminal region. BPB-BthTX-1 presented cytotoxicity of 10-40% on different tumor cell lines, which were also susceptible to the lytic action of the synthetic peptide. Injection of the modified protein or the peptide in mice, 5 days after transplantation of S 180 tumor cells, reduced 30 and 36% of the tumor size on day 14th and 76 and 79% on day 60th, respectively, when compared to the untreated control group. Thus, these antitumor properties might be of interest in the development of therapeutic strategies against cancer. (C) 2009 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Resumo:
We investigate here a modification of the discrete random pore model [Bhatia SK, Vartak BJ, Carbon 1996;34:1383], by including an additional rate constant which takes into account the different reactivity of the initial pore surface having attached functional groups and hydrogens, relative to the subsequently exposed surface. It is observed that the relative initial reactivity has a significant effect on the conversion and structural evolution, underscoring the importance of initial surface chemistry. The model is tested against experimental data on chemically controlled char oxidation and steam gasification at various temperatures. It is seen that the variations of the reaction rate and surface area with conversion are better represented by the present approach than earlier random pore models. The results clearly indicate the improvement of model predictions in the low conversion region, where the effect of the initially attached functional groups and hydrogens is more significant, particularly for char oxidation. It is also seen that, for the data examined, the initial surface chemistry is less important for steam gasification as compared to the oxidation reaction. Further development of the approach must also incorporate the dynamics of surface complexation, which is not considered here.
Resumo:
The Extended Weighted Residuals Method (EWRM) is applied to investigate the effects of viscous dissipation on the thermal development of forced convection in a porous-saturated duct of rectangular cross-section with isothermal boundary condition. The Brinkman flow model is employed for determination of the velocity field. The temperature in the flow field was computed by utilizing the Green’s function solution based on the EWRM. Following the computation of the temperature field, expressions are presented for the local Nusselt number and the bulk temperature as a function of the dimensionless longitudinal coordinate. In addition to the aspect ratio, the other parameters included in this computation are the Darcy number, viscosity ratio, and the Brinkman number.