998 resultados para Thermal barrier
Resumo:
In this work, a highly instrumented single screw extruder has been used to study the effect of polymer rheology on the thermal efficiency of the extrusion process. Three different molecular weight grades of high density polyethylene (HDPE) were extruded at a range of conditions. Three geometries of extruder screws were used at several set temperatures and screw rotation speeds. The extruder was equipped with real-time quantification of energy consumption; thermal dynamics of the process were examined using thermocouple grid sensors at the entrance to the die. Results showed that polymer rheology had a significant effect on process energy consumption and thermal homogeneity of the melt. Highest specific energy consumption and poorest homogeneity was observed for the highest viscosity grade of HDPE. Extruder screw geometry, set extrusion temperature and screw rotation speed were also found to have a direct effect on energy consumption and melt consistency. In particular, specific energy consumption was lower using a barrier flighted screw compared to single flighted screws at the same set conditions. These results highlight the complex nature of extrusion thermal dynamics and provide evidence that rheological properties of the polymer can significantly influence the thermal efficiency of the process.
Resumo:
In recent years, the search for a environmentally friendly products has increased. One of the major challenges has been the demand for biodegradable materials that can replace plastic. If a few decades ago, plastic replaced, for example, the ivory in billiard balls, and in other products, saving the lives of thousands elephants, nowadays a replacement for that plastic is being searched, to prevent the change of the environmental conditions, essential to life in harmonly with the fauna and flora that the human specie has, in recent years, destroyed. Plastic is a petroleum derivate, whose price has been growing exponentially, mainly due to the fact of beind a cheap material and also to enable the production of products that are essential to modern life. Therefore, the petrochemical era is going to come to an end and a new environmentally sustainable era, based on biodegradable materials from renewable sources, will follow. The change to green routes only will be possible with the support of the major companies, and the implementation of drastic governmental law. Poly(lactic acid), PLA, is produced from the lactose present in the corn or sugarcane and has been intensively studied in recent years because if some limitants properties required its extrusion are overcome, it has the potential to replace the traditional polymers. PLA have high brittleness, low toughness and low tensile elongation. In this work, natural antioxidant (alpha-tocopherol) and synthetics antioxidants (BHT ant TBHQ) were added to the PLA with the aim not only to improve their flexibility, but also to create an active packaging to extend the shelf life of the foods and improve the organoleptic properties by preventing food losses. The impact of the addition of antioxidants into the PLA films, in its mechanical, thermal and barrier properties were studied by FTIR, DSC, SEM, AFM, DMA, TGA, QCM and time-lag techniques.
Resumo:
An in situ experiment on a full-scale timber frame test building was carried out to study the hygrothermal performance of wood-hemp composite insulation in timber frame wall panels with and without a vapour barrier. The heat transfer properties and the likelihood of mould growth and condensation in the panels were compared. Step changes in the internal relative humidity were performed to explore the effects of high, normal and low internal moisture loads on the wall panels. No significant difference in the average equivalent thermal transmittance (U-values) between the panels with and without a vapour barrier was observed. The average equivalent U-values of the panels were close to the U-values calculated from the manufacturers’ declared thermal conductivity values of the insulation. The likelihood of condensation was higher at the interface of the wood-hemp insulation and the oriented strand board (OSB) in the panel without a vapour barrier. In terms of the parametric assessment of the mould germination potential, the relative humidity, the temperature and the exposure conditions in the insulation-OSB interfaces of the panel without a vapour barrier were found to be more favourable to the germination of mould spores. Nonetheless, when the insulations were dismantled, no mould was visually detected.
Resumo:
The nonohmic electrical features of (Ca-1/4,Cu-3/4)TiO3 perovskite ceramics, which have very strong gigantic dielectric is believed originate from potential barriers at the grain boundaries. In the present study, we used the admittance and impedance spectroscopy technique to investigate (Ca-1/4,Cu-3/4)TiO3 perovskite ceramics with low nonohmic electrical properties. The study was conducted under two different conditions: on as-sintered ceramics and on ceramics thermally treated in an oxygen-rich atmosphere. The results confirm that thermal treatment in oxygen-rich atmospheres influence the nonohmic properties. Annealing at oxygen-rich atmospheres improve the nonohmic behavior and annealing at oxygen-poor atmospheres decrease the nonohmic properties, a behavior already reported for common metal oxide nonohmic devices and here firstly evidenced for the (Ca-1/4,Cu-3/4)TiO3 perovskite related materials. The results show that oxygen also influences the capacitance values at low frequencies, a behavior that is indicative of the Schottky-type nature of the potential barrier. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Hybrid organic-inorganic ionic conductors, also called ormolytes (organically modified electrolytes), were obtained by dissolution of LiClO 4 in siloxane-poly(propylene glycol) matrixes. The dynamic features of these nanocomposites were studied and correlated to their electrical properties. Solid-state nuclear magnetic resonance (NMR) spectroscopy was used to probe the effects of the temperature and nanocomposite composition on the dynamic behaviors of both the ionic species ( 7Li) and the polymer chains ( 13C). NMR, dc ionic conductivity, and DSC results demonstrate that the Li + mobility is strongly assisted by the segmental motion of the polymer chain above its glass transition temperature. The ac ionic conductivity in such composites is explained by use of the random free energy barrier (RFEB) model, which is agreement with their disordered and heterogenous structures. These solid ormolytes are transparent and flexible, and they exhibit good ionic conductivity at room temperature (up to 10 -4 S/cm). Consequently, they are very promising candidates for use in several applications such as batteries, sensors, and electrochromic and photoelectro-chemical devices.
Resumo:
The structure and the thermodegradation behavior of both poly(methyl methacrylate)-co-poly(3-tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)-co-poly(3- tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X-ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. © 2012 Society of Plastics Engineers.
Resumo:
GaN y AlN son materiales semiconductores piezoeléctricos del grupo III-V. La heterounión AlGaN/GaN presenta una elevada carga de polarización tanto piezoeléctrica como espontánea en la intercara, lo que genera en su cercanía un 2DEG de grandes concentración y movilidad. Este 2DEG produce una muy alta potencia de salida, que a su vez genera una elevada temperatura de red. Las tensiones de puerta y drenador provocan un stress piezoeléctrico inverso, que puede afectar a la carga de polarización piezoeléctrica y así influir la densidad 2DEG y las características de salida. Por tanto, la física del dispositivo es relevante para todos sus aspectos eléctricos, térmicos y mecánicos. En esta tesis se utiliza el software comercial COMSOL, basado en el método de elementos finitos (FEM), para simular el comportamiento integral electro-térmico, electro-mecánico y electro-térmico-mecánico de los HEMTs de GaN. Las partes de acoplamiento incluyen el modelo de deriva y difusión para el transporte electrónico, la conducción térmica y el efecto piezoeléctrico. Mediante simulaciones y algunas caracterizaciones experimentales de los dispositivos, hemos analizado los efectos térmicos, de deformación y de trampas. Se ha estudiado el impacto de la geometría del dispositivo en su auto-calentamiento mediante simulaciones electro-térmicas y algunas caracterizaciones eléctricas. Entre los resultados más sobresalientes, encontramos que para la misma potencia de salida la distancia entre los contactos de puerta y drenador influye en generación de calor en el canal, y así en su temperatura. El diamante posee une elevada conductividad térmica. Integrando el diamante en el dispositivo se puede dispersar el calor producido y así reducir el auto-calentamiento, al respecto de lo cual se han realizado diversas simulaciones electro-térmicas. Si la integración del diamante es en la parte superior del transistor, los factores determinantes para la capacidad disipadora son el espesor de la capa de diamante, su conductividad térmica y su distancia a la fuente de calor. Este procedimiento de disipación superior también puede reducir el impacto de la barrera térmica de intercara entre la capa adaptadora (buffer) y el substrato. La muy reducida conductividad eléctrica del diamante permite que pueda contactar directamente el metal de puerta (muy cercano a la fuente de calor), lo que resulta muy conveniente para reducir el auto-calentamiento del dispositivo con polarización pulsada. Por otra parte se simuló el dispositivo con diamante depositado en surcos atacados sobre el sustrato como caminos de disipación de calor (disipador posterior). Aquí aparece una competencia de factores que influyen en la capacidad de disipación, a saber, el surco atacado contribuye a aumentar la temperatura del dispositivo debido al pequeño tamaño del disipador, mientras que el diamante disminuiría esa temperatura gracias a su elevada conductividad térmica. Por tanto, se precisan capas de diamante relativamente gruesas para reducer ele efecto de auto-calentamiento. Se comparó la simulación de la deformación local en el borde de la puerta del lado cercano al drenador con estructuras de puerta estándar y con field plate, que podrían ser muy relevantes respecto a fallos mecánicos del dispositivo. Otras simulaciones se enfocaron al efecto de la deformación intrínseca de la capa de diamante en el comportamiento eléctrico del dispositivo. Se han comparado los resultados de las simulaciones de la deformación y las características eléctricas de salida con datos experimentales obtenidos por espectroscopía micro-Raman y medidas eléctricas, respectivamente. Los resultados muestran el stress intrínseco en la capa producido por la distribución no uniforme del 2DEG en el canal y la región de acceso. Además de aumentar la potencia de salida del dispositivo, la deformación intrínseca en la capa de diamante podría mejorar la fiabilidad del dispositivo modulando la deformación local en el borde de la puerta del lado del drenador. Finalmente, también se han simulado en este trabajo los efectos de trampas localizados en la superficie, el buffer y la barrera. Las medidas pulsadas muestran que tanto las puertas largas como las grandes separaciones entre los contactos de puerta y drenador aumentan el cociente entre la corriente pulsada frente a la corriente continua (lag ratio), es decir, disminuir el colapse de corriente (current collapse). Este efecto ha sido explicado mediante las simulaciones de los efectos de trampa de superficie. Por su parte, las referidas a trampas en el buffer se enfocaron en los efectos de atrapamiento dinámico, y su impacto en el auto-calentamiento del dispositivo. Se presenta también un modelo que describe el atrapamiento y liberación de trampas en la barrera: mientras que el atrapamiento se debe a un túnel directo del electrón desde el metal de puerta, el desatrapamiento consiste en la emisión del electrón en la banda de conducción mediante túnel asistido por fonones. El modelo también simula la corriente de puerta, debida a la emisión electrónica dependiente de la temperatura y el campo eléctrico. Además, también se ilustra la corriente de drenador dependiente de la temperatura y el campo eléctrico. ABSTRACT GaN and AlN are group III-V piezoelectric semiconductor materials. The AlGaN/GaN heterojunction presents large piezoelectric and spontaneous polarization charge at the interface, leading to high 2DEG density close to the interface. A high power output would be obtained due to the high 2DEG density and mobility, which leads to elevated lattice temperature. The gate and drain biases induce converse piezoelectric stress that can influence the piezoelectric polarization charge and further influence the 2DEG density and output characteristics. Therefore, the device physics is relevant to all the electrical, thermal, and mechanical aspects. In this dissertation, by using the commercial finite-element-method (FEM) software COMSOL, we achieved the GaN HEMTs simulation with electro-thermal, electro-mechanical, and electro-thermo-mechanical full coupling. The coupling parts include the drift-diffusion model for the electron transport, the thermal conduction, and the piezoelectric effect. By simulations and some experimental characterizations, we have studied the device thermal, stress, and traps effects described in the following. The device geometry impact on the self-heating was studied by electro-thermal simulations and electrical characterizations. Among the obtained interesting results, we found that, for same power output, the distance between the gate and drain contact can influence distribution of the heat generation in the channel and thus influence the channel temperature. Diamond possesses high thermal conductivity. Integrated diamond with the device can spread the generated heat and thus potentially reduce the device self-heating effect. Electro-thermal simulations on this topic were performed. For the diamond integration on top of the device (top-side heat spreading), the determinant factors for the heat spreading ability are the diamond thickness, its thermal conductivity, and its distance to the heat source. The top-side heat spreading can also reduce the impact of thermal boundary resistance between the buffer and the substrate on the device thermal behavior. The very low electrical conductivity of diamond allows that it can directly contact the gate metal (which is very close to the heat source), being quite convenient to reduce the self-heating for the device under pulsed bias. Also, the diamond coated in vias etched in the substrate as heat spreading path (back-side heat spreading) was simulated. A competing mechanism influences the heat spreading ability, i.e., the etched vias would increase the device temperature due to the reduced heat sink while the coated diamond would decrease the device temperature due to its higher thermal conductivity. Therefore, relative thick coated diamond is needed in order to reduce the self-heating effect. The simulated local stress at the gate edge of the drain side for the device with standard and field plate gate structure were compared, which would be relevant to the device mechanical failure. Other stress simulations focused on the intrinsic stress in the diamond capping layer impact on the device electrical behaviors. The simulated stress and electrical output characteristics were compared to experimental data obtained by micro-Raman spectroscopy and electrical characterization, respectively. Results showed that the intrinsic stress in the capping layer caused the non-uniform distribution of 2DEG in the channel and the access region. Besides the enhancement of the device power output, intrinsic stress in the capping layer can potentially improve the device reliability by modulating the local stress at the gate edge of the drain side. Finally, the surface, buffer, and barrier traps effects were simulated in this work. Pulsed measurements showed that long gates and distances between gate and drain contact can increase the gate lag ratio (decrease the current collapse). This was explained by simulations on the surface traps effect. The simulations on buffer traps effects focused on illustrating the dynamic trapping/detrapping in the buffer and the self-heating impact on the device transient drain current. A model was presented to describe the trapping and detrapping in the barrier. The trapping was the electron direct tunneling from the gate metal while the detrapping was the electron emission into the conduction band described by phonon-assisted tunneling. The reverse gate current was simulated based on this model, whose mechanism can be attributed to the temperature and electric field dependent electron emission in the barrier. Furthermore, the mechanism of the device bias via the self-heating and electric field impact on the electron emission and the transient drain current were also illustrated.
Resumo:
Point mutants of three unrelated antifluorescein antibodies were constructed to obtain nine different single-chain Fv fragments, whose on-rates, off-rates, and equilibrium binding affinities were determined in solution. Additionally, activation energies for unbinding were estimated from the temperature dependence of the off-rate in solution. Loading rate-dependent unbinding forces were determined for single molecules by atomic force microscopy, which extrapolated at zero force to a value close to the off-rate measured in solution, without any indication for multiple transition states. The measured unbinding forces of all nine mutants correlated well with the off-rate in solution, but not with the temperature dependence of the reaction, indicating that the same transition state must be crossed in spontaneous and forced unbinding and that the unbinding path under load cannot be too different from the one at zero force. The distance of the transition state from the ground state along the unbinding pathway is directly proportional to the barrier height, regardless of the details of the binding site, which most likely reflects the elasticity of the protein in the unbinding process. Atomic force microscopy thus can be a valuable tool for the characterization of solution properties of protein-ligand systems at the single molecule level, predicting relative off-rates, potentially of great value for combinatorial chemistry and biology.
Resumo:
The effects of dielectric barrier discharge plasma treatment on zein film containing thymol as an active ingredient were evaluated. The plasma discharge was optically characterized to identify the reactive species. A significant increase in the film roughness (p < 0.05) was observed due to the etching effect of DBD plasma, which was correlated with the increase in the diffusion rate of thymol in the food simulant. The diffusion of thymol from the zein film was measured in aqueous solution. The kinetics of thymol release followed the Fick’s law of diffusion as shown by the high correlation coefficients between experimental and theoretical data. No significant change (p > 0.05) was observed for the thermal properties of the antimicrobial films after DBD plasma treatment.
Resumo:
Recent episodes of mass coral bleaching, the loss of symbiotic dinoflagellates or photosynthetic pigment from hermatypic corals, have been triggered by elevated sea temperatures. Photosynthetic irradiance is an important secondary factor. Host based pigments (pocilloporins or Green Fluorescent Protein homologues) have been proposed to reduce the impact of elevated temperature by shading the dinoflagellate symbionts of corals, thereby reducing light stress. This study investigates this phenomenon in the reef-building coral Acropora aspera from Heron Island Research Station (Great Barrier Reef, Australia), which occurs as 3 distinct colour morphs. Experimental data showed that the host pigments are photoprotective at normal temperatures or
Resumo:
Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.
Resumo:
Adaptation to localised thermal regimes is facilitated by restricted gene flow, ultimately leading to genetic divergence among populations and differences in their physiological tolerances. Allozyme analysis of six polymorphic loci was used to assess genetic differentiation between nine populations of the reef-building coral Acropora millepora over a latitudinal temperature gradient on the inshore regions of the Great Barrier Reef (GBR). Small but significant genetic differentiation indicative of moderate levels of gene flow (pairwise F-ST 0.023 to 0.077) was found between southern populations of A. millepora in cooler regions of the GBR and the warmer, central or northern GBR populations. Patterns of genetic differentiation at these putatively neutral allozyme loci broadly matched experimental variation in thermal tolerance and were consistent with local thermal regimes (warmest monthly-averages) for the A. millepora populations examined. It is therefore hypothesized that natural selection has influenced the thermal tolerance of the A. millepora populations examined and greater genetic divergence is likely to be revealed by examination of genetic markers under the direct effects of natural selection.
Resumo:
The thermal oxidation of two model compounds representing the aromatic polyamide, MXD6 (poly m-xylylene adipamide) have been investigated. The model compounds (having different chemical structures, viz, one corresponding to the aromatic part of the chain and the other to the aliphatic part), based on the structure of MXD6 were prepared and reactions with different concentrations of cobalt ions examined with the aim of identifying the role of the different structural components of MXD6 on the mechanism of oxidation. The study showed that cobalt, in the presence of sodium phosphite (which acts as an antioxidant for MXD6 and the model compounds), increases the oxidation of the model compounds. It is believed that the cobalt acts predominantly as a catalyst for the decomposition of hydroperoxides, formed during oxidation of the models in the melt phase, to free radical products and to a lesser extent as a catalyst for the initiation of the oxidation reaction by complex formation with the amide, which is more likely to take place in the solid phase. An oxidation cycle has been proposed consisting of two parts both of which will occur, to some extent under all conditions of oxidation (in the melt and in the solid phase), but their individual predominance must be determined by the prevailing oxygen pressure at the reaction site. The different aspects of this proposed mechanism were examined from extensive model compound studies, and the evidence based on the nature of product formation and the kinetics of these reactions. Main techniques used to compare the rates of oxidation and the study of kinetics included, oxygen absorption, FT-IR, UV and TGA. HPLC was used for product separation and identification.
Resumo:
Schottky-barrier devices were formed from electropolymerised films of poly (3-methylthiophene) (PMeT). Thermal annealing of a partially undoped film led to diodes with rectification ratios as high as 5900 at 1 V and 50,000 at 2.5 V and ideality factors slightly above 2. The temperature dependence of ac loss tangent and forward currents are identical suggesting that bulk effects dominate device behaviour event at very low forward voltages. Below 250 K forward currents are essentially independent of temperature. Preliminary TSC measurements show the presence of at least two trapping levels in the devices. © 1993.