949 resultados para The Indian High Courts Act 1911, 1
Resumo:
A newsletter produced by the Iowa Law Enforcement Academy.
Resumo:
A newsletter produced by the Iowa Law Enforcement Academy.
Resumo:
In the eukaryotic cell cycle, there are major control points in late G2 to determine the timing of the initiation of mitosis, and in late G1, regulating entry into S phase. In yeasts, this latter control is called start. Traverse of the start control and progression to S phase is accompanied by an increase in the expression of some of the genes whose products are required for DNA synthesis. In Saccharomyces cerevisiae, the coordinate expression of these genes in late G1 is dependent on a cis-acting sequence element called the MluI cell cycle box (MCB). A transcription factor called DSC-1 binds these elements and mediates cell cycle regulated transcription, though it is unclear whether this is by cell cycle-dependent changes in its activity. A DSC-1-like factor has also been identified in the fission yeast S.pombe. This is composed of at least the products of the cdc10 and sct1/res1 genes, and binds to the promoters of genes whose expression increases prior to S phase. We demonstrate that p85cdc10 is a nuclear protein and that the activity of the S.pombe DSC-1 factor varies through the cell cycle; it is high in cells that have passed start, decreases at the time of anaphase, remains low during the pre-start phase of G1 and increases at the time of the next S phase. We also show that the reactivation in late G1 is dependent on the G1 form of p34cdc2.
Resumo:
The Office of Auditor of State's letter reporting the results of its evaluation of whether the Office of Secretary of State may appropriately use funds received under the Help America Vote Act
Resumo:
This book, published jointly by the American Society of Agronomy, Soil Science Society of American and Iowa State University presents the papers that were given at a symposium held in Ames, Iowa, on Nov. 30 and Dec. 1, 1965 on the general topic of plant environment and efficient water use.
Resumo:
Cytotoxic T cells that are present in tumors and capable of recognizing tumor epitopes are nevertheless generally impotent in eliciting tumor rejection. Thus, identifying the immune escape mechanisms responsible for inducing tumor-specific CD8(+) T-cell dysfunction may reveal effective strategies for immune therapy. The inhibitory receptors PD-1 and Tim-3 are known to negatively regulate CD8(+) T-cell responses directed against the well-characterized tumor antigen NY-ESO-1. Here, we report that the upregulation of the inhibitory molecule BTLA also plays a critical role in restricting NY-ESO-1-specific CD8(+) T-cell expansion and function in melanoma. BTLA-expressing PD-1(+)Tim-3(-) CD8(+) T cells represented the largest subset of NY-ESO-1-specific CD8(+) T cells in patients with melanoma. These cells were partially dysfunctional, producing less IFN-γ than BTLA(-) T cells but more IFN-γ, TNF, and interleukin-2 than the highly dysfunctional subset expressing all three receptors. Expression of BTLA did not increase with higher T-cell dysfunction or upon cognate antigen stimulation, as it does with PD-1, suggesting that BTLA upregulation occurs independently of functional exhaustion driven by high antigen load. Added with PD-1 and Tim-3 blockades, BTLA blockade enhanced the expansion, proliferation, and cytokine production of NY-ESO-1-specific CD8(+) T cells. Collectively, our findings indicate that targeting BTLA along with the PD-1 and Tim-3 pathways is critical to reverse an important mechanism of immune escape in patients with advanced melanoma.
Resumo:
As part of a European initiative (EuroVacc), we report the design, construction, and immunogenicity of two HIV-1 vaccine candidates based on a clade C virus strain (CN54) representing the current major epidemic in Asia and parts of Africa. Open reading frames encoding an artificial 160-kDa GagPolNef (GPN) polyprotein and the external glycoprotein gp120 were fully RNA and codon optimized. A DNA vaccine (DNA-GPN and DNA-gp120, referred to as DNA-C), and a replication-deficient vaccinia virus encoding both reading frames (NYVAC-C), were assessed regarding immunogenicity in Balb/C mice. The intramuscular administration of both plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial T-cell responses against both antigens as well as Env-specific antibodies. Whereas low doses of NYVAC-C failed to induce specific CTL or antibodies, high doses generated cellular as well as humoral immune responses, but these did not reach the levels seen following DNA vaccination. The most potent immune responses were detectable using prime:boost protocols, regardless of whether DNA-C or NYVAC-C was used as the priming or boosting agent. These preclinical findings revealed the immunogenic response triggered by DNA-C and its enhancement by combining it with NYVAC-C, thus complementing the macaque preclinical and human phase I clinical studies of EuroVacc.
Resumo:
Aims: The HR-NBL1 Study of the European SIOP Neuroblastoma Group (SIOPEN) randomised two high dose regimens to learn about potential superiority and toxicity profiles.Patients and Methods: At interim analysis 1483 high risk neuroblastoma patients (893 males) were included since 2002 with either INSS stage 4 disease (1383 pts) above 1 year, or as infants (59 pts) and stage 2&3 of any age (145 pts) with MYCN amplification. The median age at diagnosis was 2.9 years (1 month-19.9 years) with a median follow up of 3 years. Response eligibility criteria prior randomisation after Rapid Cojec Induction (J Clin Oncol, 2010) ± 2 courses of TVD (Cancer, 2003) included complete bone marrow remission and at least partial response at skeletal sites with no more than 3, but improved mIBG positive spots and a PBSC harvest of at least 3x10E6 CD34/kgBW. The randomised regimens were BuMel [busulfan oral till 2006, 4x150mg/m² in 4 ED; or intravenous use according to body weight as licenced thereafter; melphalan 140mg/m²/day) and CEM [carboplatinum ctn. infusion (4x AUC 4.1mg/ml.min/day, etoposid ctn. infusion (4x 338mg/m²/day or [4x 200mg/m²/day]*, melphalan (3x70mg/m²/day; 3x60mg/m²/day*;*reduced dosis if GFR< 100ml/min/1.73m²). Supportive care followed institutional guidelines. VOD prophylaxis included ursadiol, but randomised patients were not eligible for the prophylactic defibrotide trial. Local control included surgery and radiotherapy of 21Gy.Results: Of 1483 patients, 584 were being randomised for the high dose question at data lock. A significant difference in event free survival (3-year EFS 49% vs. 33%, p<0.001) and overall survival (3-year OS 61% vs. 48%, p=0.003) favouring the BuMel regimen over the CEM regimen was demonstrated. The relapse/progression rate was significantly higher after CEM (0.60±0.03) than after BuMel (0.48±0.03)(p<0.001). Toxicity data had reached 80% completeness at last analysis. The severe toxicity rate up to day 100 (ICU and toxic deaths) was below 10%, but was significantly higher for CEM (p= 0.014). The acute toxic death rate was 3% for BuMel and 5% for CEM (NS). The acute HDT toxicity profile favours the BuMel regimen in spite of a total VOD incidence of 18% (grade 3:5%).Conclusions: The Peto rule of P<0.001 at interim analysis on the primary endpoint, EFS was met. Hence randomization was stopped with BuMel as recommended standard treatment in the HR-NBl1/SIOPEN trial which is still accruing for the randomised immunotherapy question.
Resumo:
An attractive treatment of cancer consists in inducing tumor-eradicating CD8(+) CTL specific for tumor-associated Ags, such as NY-ESO-1 (ESO), a strongly immunogenic cancer germ line gene-encoded tumor-associated Ag, widely expressed on diverse tumors. To establish optimal priming of ESO-specific CTL and to define critical vaccine variables and mechanisms, we used HLA-A2/DR1 H-2(-/-) transgenic mice and sequential immunization with immunodominant DR1- and A2-restricted ESO peptides. Immunization of mice first with the DR1-restricted ESO(123-137) peptide and subsequently with mature dendritic cells (DCs) presenting this and the A2-restriced ESO(157-165) epitope generated abundant, circulating, high-avidity primary and memory CD8(+) T cells that efficiently killed A2/ESO(157-165)(+) tumor cells. This prime boost regimen was superior to other vaccine regimes and required strong Th1 cell responses, copresentation of MHC class I and MHC class II peptides by the same DC, and resulted in upregulation of sphingosine 1-phosphate receptor 1, and thus egress of freshly primed CD8(+) T cells from the draining lymph nodes into circulation. This well-defined system allowed detailed mechanistic analysis, which revealed that 1) the Th1 cytokines IFN-gamma and IL-2 played key roles in CTL priming, namely by upregulating on naive CD8(+) T cells the chemokine receptor CCR5; 2) the inflammatory chemokines CCL4 (MIP-1beta) and CCL3 (MIP-1alpha) chemoattracted primed CD4(+) T cells to mature DCs and activated, naive CD8(+) T cells to DC-CD4 conjugates, respectively; and 3) blockade of these chemokines or their common receptor CCR5 ablated priming of CD8(+) T cells and upregulation of sphingosine 1-phosphate receptor 1. These findings provide new opportunities for improving T cell cancer vaccines.
Resumo:
Environmental histories of plant exchanges have largely centred on their eco- nomic importance in international trade and on their ecological and social impacts in the places where they were introduced. Yet few studies have at- tempted to examine how plants brought from elsewhere become incorporated over time into the regional cultures of material life and agricultural landscapes. This essay considers the theoretical and methodological problems in inves- tigating the environmental history, diversity and distribution of food plants transferred across the Indian Ocean over several millennia. It brings together concepts of creolisation, syncretism, and hybridity to outline a framework for understanding how biotic exchanges and diffusions have been translated into regional landscape histories through food traditions, ritual practices and articu- lation of cultural identity. We use the banana plant - which underwent early domestication across New Guinea, South-east Asia and peninsular India and reached East Africa roughly two thousand years ago - as an example for il- lustrating the diverse patterns of incorporation into the cultural symbolism, material life and regional landscapes of the Indian Ocean World. We show that this cultural evolutionary approach allows new historical insights to emerge and enriches ongoing debates regarding the antiquity of the plant's diffusion from South-east Asia to Africa.
Resumo:
Key Messages: A fundamental failure of high-risk prevention strategies is their inability to prevent disease in the large part of the population at a relatively small average risk and from which most cases of diseases originate. The development of individual predictive medicine and the widening of high-risk categories for numerous (chronic) conditions lead to the application of pseudo-high-risk prevention strategies. Widening the criteria justifying individual preventive interventions and the related pseudo-high-risk strategies lead to treating, individually, ever healthier and larger strata of the population. The pseudo-high-risk prevention strategies raise similar problems compared with high-risk strategies, however on a larger scale and without any of the benefit of population-based strategies. Some 30 years ago, the strengths and weaknesses of population-based and high-risk prevention strategies were brilliantly delineated by Geoffrey Rose in several seminal publications (Table 1).1,2 His work had major implications not only for epidemiology and public health but also for clinical medicine. In particular, Rose demonstrated the fundamental failure of high-risk prevention strategies, that is, by missing a large number of preventable cases.
Strategic alliances as an international entry strategy: Finnish cleantech SMEs and the Indian market
Resumo:
The demand for environmental technologies, also called cleantech, is growing globally but the need is especially high in emerging markets such as India where the rising economy and rapid industrialisation have led to increasing energy needs and environmental degradation. The market is of great potential also for the Finnish cleantech cluster that represents advanced expertise in several fields of environmental technologies. However, most of the Finnish companies in the field are SMEs that face challenges in their internationalisation due to their limited resources. The objective of this study was to estimate, whether strategic alliances could be an efficient entry strategy for Finnish cleantech SMEs entering the Indian market. This was done by studying what are the key factors influencing the international entry mode decision of Finnish cleantech SMEs, what are the major factors affecting the entry of Finnish cleantech SMEs to the Indian market and how do Finnish cleantech SMEs use strategic alliances in their internationalisation process. The study was realised as a qualitative multi-case study through theme interviews of Finnish cleantech SME representatives. The results indicated that Finnish cleantech SMEs prefer to enter international markets through non-equity and collaborative modes of entry. These entry modes are chosen because of the small size and limited resources of companies, but also because they want to protect their innovative technologies from property rights violations. India is an attracting market for Finnish cleantech SMEs mainly because of its size and growth, but insufficient environmental regulation and high import tariffs have hindered entry to the market. Finnish cleantech SMEs commonly use strategic alliances in their internationalisation process but the use is rather one-sided. Most of the formed strategic alliances are low-commitment, international contractual agreement in sales and distribution. Alliance partner selection receives less attention. In the future, providing Finnish cleantech SMEs with international experience and training could help in diversifying the use of strategic alliances and increase their benefits to SME internationalisation.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
High mobility group box 1 (HMGB1) was discovered as a novel late-acting cytokine that contributes to acute lung injury (ALI). However, the contribution of HMGB1 to two-hit-induced ALI has not been investigated. To examine the participation of HMGB1 in the pathogenesis of ALI caused by the two-hit hypothesis, endotoxin was injected intratracheally in a hemorrhagic shock-primed ALI mouse model. Concentrations of HMGB1 in the lung of the shock group were markedly increased at 16 h (1.63 ± 0.05, compared to the control group: 1.02 ± 0.03; P < 0.05), with the highest concentration being observed at 24 h. In the sham/lipopolysaccharide group, lung HMGB1 concentrations were found to be markedly increased at 24 h (1.98 ± 0.08, compared to the control group: 1.07 ± 0.03; P < 0.05). Administration of lipopolysaccharide to the hemorrhagic shock group resulted in a notable HMGB1 increase by 4 h, with a further increase by 16 h. Intratracheal lipopolysaccharide injection after hemorrhagic shock resulted in the highest lung leak at 16 h (2.68 ± 0.08, compared to the control group: 1.05 ± 0.04; P < 0.05). Compared to the hemorrhagic shock/lipopolysaccharide mice, blockade of HMGB1 at the same time as lipopolysaccharide injection prevented significantly pulmonary tumor necrosis factor-alpha, interleukin-1beta and myeloperoxidase. Lung leak was also markedly reduced at 16 h; blockade of HMGB1 24 h after lipopolysaccharide injection failed to alter lung leak or myeloperoxidase at 48 h. Our observations suggest that HMGB1 plays a key role as a late mediator when lipopolysaccharide is injected after hemorrhagic shock-primed ALI and the kinetics of its release differs from that of one-hit ALI. The therapeutic window to suppress HMGB1 activity should not be delayed to 24 h after the disease onset.