983 resultados para Tensor-based morphometry


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuroimaging studies in bipolar disorder report gray matter volume (GMV) abnormalities in neural regions implicated in emotion regulation. This includes a reduction in ventral/orbital medial prefrontal cortex (OMPFC) GMV and, inconsistently, increases in amygdala GMV. We aimed to examine OMPFC and amygdala GMV in bipolar disorder type 1 patients (BPI) versus healthy control participants (HC), and the potential confounding effects of gender, clinical and illness history variables and psychotropic medication upon any group differences that were demonstrated in OMPFC and amygdala GMV. Images were acquired from 27 BPI (17 euthymic, 10 depressed) and 28 age- and gender-matched HC in a 3T Siemens scanner. Data were analyzed with SPM5 using voxel-based morphometry (VBM) to assess main effects of diagnostic group and gender upon whole brain (WB) GMV. Post-hoc analyses were subsequently performed using SPSS to examine the extent to which clinical and illness history variables and psychotropic medication contributed to GMV abnormalities in BPI in a priori and non-a priori regions has demonstrated by the above VBM analyses. BPI showed reduced GMV in bilateral posteromedial rectal gyrus (PMRG), but no abnormalities in amygdala GMV. BPI also showed reduced GMV in two non-a priori regions: left parahippocampal gyrus and left putamen. For left PMRG GMV, there was a significant group by gender by trait anxiety interaction. GMV was significantly reduced in male low-trait anxiety BPI versus male low-trait anxiety HC, and in high- versus low-trait anxiety male BPI. Our results show that in BPI there were significant effects of gender and trait-anxiety, with male BPI and those high in trait-anxiety showing reduced left PMRG GMV. PMRG is part of medial prefrontal network implicated in visceromotor and emotion regulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genetic factors are important in the etiology of bipolar disorder (BD). However, first-degree relatives of BD patients are at risk for a number of psychiatric conditions, most commonly major depressive disorder (MDD), although the majority remain well. The purpose of the present study was to identify potential brain structural correlates for risk and resilience to mood disorders in patients with BD, type I (BD-I) and their relatives. Structural magnetic resonance imaging scans were acquired from 30 patients with BD-I, 50 of their firstdegree relatives (28 had no Axis I disorder, while 14 had MDD) and 52 controls. We used voxel-based morphometry, implemented in SPM5 to identify group differences in regional gray matter volume. From the identified clusters, potential differences were further examined based on diagnostic status (BD-I patients, MDD relatives, healthy relatives, controls). Whole-brain voxel-based analysis identified group differences in the left hemisphere in the insula, cerebellum, and substantia nigra. Increased left insula volume was associated with genetic preposition to BD-I independent of clinical phenotype. In contrast, increased left substantia nigra volume was observed in those with the clinical phenotype of BD-I. Changes uniquely associated with the absence of a clinical diagnosis in BD relatives were observed in the left cerebellum. Our data suggest that in BD, genetic and phenotype-related influences on brain structure are dissociable; if replicated, these findings may help with early identification of high-risk individuals who are more likely to transition to syndromal states. Copyright © 2009 Society for Neuroscience.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Volume reduction and functional impairment in areas of the prefrontal cortex (PFC) have been found in borderline personality disorder (BPD), particularly in patients with a history of childhood abuse. These abnormalities may contribute to the expression of emotion dysregulation and aggressiveness. In this study we investigated whether the volume of the PFC is reduced in BPD patients and whether a history of childhood abuse would be associated with greater PFC structural changes. Structural MRI data were obtained from 18 BPD patients and 19 healthy individuals matched for age, sex, handedness, and education and were analyzed using voxel based morphometry. The Child Abuse Scale was used to elicit a past history of abuse; aggression was evaluated using the Buss-Durkee Hostility Inventory (BDHI). The volume of the right ventrolateral PFC (VLPFC) was significantly reduced in BPD subjects with a history of childhood abuse compared to those without this risk factor. Additionally, right VLPFC gray matter volume significantly correlated with the BDHI total score and with BDHI irritability and negativism subscale scores in patients with a history of childhood abuse. Our results suggest that a history of childhood abuse may lead to increased aggression mediated by an impairment of the right VLPFC. © 2013 Elsevier Ireland Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: In Early Onset Schizophrenia (EOS; onset before the 18th birthday) late brain maturational changes may interact with disease mechanisms leading to a wave of back to front structural changes during adolescence. To further explore this effect we examined the relationship between age of onset and duration of illness on brain morphology in adolescents with EOS. Subjects and methods: Structural brain magnetic resonance imaging scans were obtained from 40 adolescents with EOS. We used Voxel Based Morphometry and multiple regressions analyses, implemented in SPM, to examine the relationship between gray matter volume with age of onset and illness duration. Results: Age of onset showed a positive correlation with regional gray matter volume in the right superior parietal lobule (Brodmann Area 7). Duration of illness was inversely related to regional gray matter volume in the left inferior frontal gyrus (BA 11/47). Conclusions: Parietal gray matter loss may contribute to the onset of schizophrenia while orbitofrontal gray matter loss is associated with illness duration. © 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accumulating evidence suggest a life-long impact of disease related mechanisms on brain structure in schizophrenia which may be modified by antipsychotic treatment. The aim of the present study was to investigate in a large sample of patients with schizophrenia the effect of illness duration and antipsychotic treatment on brain structure. Seventy-one schizophrenic patients and 79 age and gender matched healthy participants underwent brain magnetic resonance imaging (MRI). All images were processed with voxel based morphometry, using SPM5. Compared to healthy participants, patients showed decrements in gray matter volume in the left medial and left inferior frontal gyrus. In addition, duration of illness was negatively associated with gray matter volume in prefrontal regions bilaterally, in the temporal pole on the left and the caudal superior temporal gyrus on the right. Cumulative exposure to antipsychotics correlated positively with gray matter volumes in the cingulate gyrus for typical agents and in the thalamus for atypical drugs. These findings (a) indicate that structural abnormalities in prefrontal and temporal cortices in schizophrenia are progressive and, (b) suggest that antipsychotic medication has a significant impact on brain morphology. © 2009 Elsevier B.V. and ECNP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is an investigation of structural brain abnormalities, as well as multisensory and unisensory processing deficits in autistic traits and Autism Spectrum Disorder (ASD). To achieve this, structural and functional magnetic resonance imaging (fMRI) and psychophysical techniques were employed. ASD is a neurodevelopmental condition which is characterised by the social communication and interaction deficits, as well as repetitive patterns of behaviour, interests and activities. These traits are thought to be present in a typical population. The Autism Spectrum Quotient questionnaire (AQ) was developed to assess the prevalence of autistic traits in the general population. Von dem Hagen et al. (2011) revealed a link between AQ with white matter (WM) and grey matter (GM) volume (using voxel-based-morphometry). However, their findings revealed no difference in GM in areas associated with social cognition. Cortical thickness (CT) measurements are known to be a more direct measure of cortical morphology than GM volume. Therefore, Chapter 2 investigated the relationship between AQ scores and CT in the same sample of participants. This study showed that AQ scores correlated with CT in the left temporo-occipital junction, left posterior cingulate, right precentral gyrus and bilateral precentral sulcus, in a typical population. These areas were previously associated with structural and functional differences in ASD. Thus the findings suggest, to some extent, autistic traits are reflected in brain structure - in the general population. The ability to integrate auditory and visual information is crucial to everyday life, and results are mixed regarding how ASD influences audiovisual integration. To investigate this question, Chapter 3 examined the Temporal Integration Window (TIW), which indicates how precisely sight and sound need to be temporally aligned so that a unitary audiovisual event can be perceived. 26 adult males with ASD and 26 age and IQ-matched typically developed males were presented with flash-beep (BF), point-light drummer, and face-voice (FV) displays with varying degrees of asynchrony and asked to make Synchrony Judgements (SJ) and Temporal Order Judgements (TOJ). Analysis of the data included fitting Gaussian functions as well as using an Independent Channels Model (ICM) to fit the data (Garcia-Perez & Alcala-Quintana, 2012). Gaussian curve fitting for SJs showed that the ASD group had a wider TIW, but for TOJ no group effect was found. The ICM supported these results and model parameters indicated that the wider TIW for SJs in the ASD group was not due to sensory processing at the unisensory level, but rather due to decreased temporal resolution at a decisional level of combining sensory information. Furthermore, when performing TOJ, the ICM revealed a smaller Point of Subjective Simultaneity (PSS; closer to physical synchrony) in the ASD group than in the TD group. Finding that audiovisual temporal processing is different in ASD encouraged us to investigate the neural correlates of multisensory as well as unisensory processing using functional magnetic resonance imaging fMRI. Therefore, Chapter 4 investigated audiovisual, auditory and visual processing in ASD of simple BF displays and complex, social FV displays. During a block design experiment, we measured the BOLD signal when 13 adults with ASD and 13 typically developed (TD) age-sex- and IQ- matched adults were presented with audiovisual, audio and visual information of BF and FV displays. Our analyses revealed that processing of audiovisual as well as unisensory auditory and visual stimulus conditions in both the BF and FV displays was associated with reduced activation in ASD. Audiovisual, auditory and visual conditions of FV stimuli revealed reduced activation in ASD in regions of the frontal cortex, while BF stimuli revealed reduced activation the lingual gyri. The inferior parietal gyrus revealed an interaction between stimulus sensory condition of BF stimuli and group. Conjunction analyses revealed smaller regions of the superior temporal cortex (STC) in ASD to be audiovisual sensitive. Against our predictions, the STC did not reveal any activation differences, per se, between the two groups. However, a superior frontal area was shown to be sensitive to audiovisual face-voice stimuli in the TD group, but not in the ASD group. Overall this study indicated differences in brain activity for audiovisual, auditory and visual processing of social and non-social stimuli in individuals with ASD compared to TD individuals. These results contrast previous behavioural findings, suggesting different audiovisual integration, yet intact auditory and visual processing in ASD. Our behavioural findings revealed audiovisual temporal processing deficits in ASD during SJ tasks, therefore we investigated the neural correlates of SJ in ASD and TD controls. Similar to Chapter 4, we used fMRI in Chapter 5 to investigate audiovisual temporal processing in ASD in the same participants as recruited in Chapter 4. BOLD signals were measured while the ASD and TD participants were asked to make SJ on audiovisual displays of different levels of asynchrony: the participants’ PSS, audio leading visual information (audio first), visual leading audio information (visual first). Whereas no effect of group was found with BF displays, increased putamen activation was observed in ASD participants compared to TD participants when making SJs on FV displays. Investigating SJ on audiovisual displays in the bilateral superior temporal gyrus (STG), an area involved in audiovisual integration (see Chapter 4), we found no group differences or interaction between group and levels of audiovisual asynchrony. The investigation of different levels of asynchrony revealed a complex pattern of results indicating a network of areas more involved in processing PSS than audio first and visual first, as well as areas responding differently to audio first compared to video first. These activation differences between audio first and video first in different brain areas are constant with the view that audio leading and visual leading stimuli are processed differently.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exogenous mechanical perturbations on living tissues are commonly used to investigate whether cell effectors can respond to mechanical cues. However, in most of these experiments, the applied mechanical stress and/or the biological response are described only qualitatively. We developed a quantitative pipeline based on microindentation and image analysis to investigate the impact of a controlled and prolonged compression on microtubule behaviour in the Arabidopsis shoot apical meristem, using microtubule fluorescent marker lines. We found that a compressive stress, in the order of magnitude of turgor pressure, induced apparent microtubule bundling. Importantly, that response could be reversed several hours after the release of compression. Next, we tested the contribution of microtubule severing to compression-induced bundling: microtubule bundling seemed less pronounced in the katanin mutant, in which microtubule severing is dramatically reduced. Conversely, some microtubule bundles could still be observed 16 hours after the release of compression in the spiral2 mutant, in which severing rate is instead increased. To quantify the impact of mechanical stress on anisotropy and orientation of microtubule arrays, we used the nematic tensor based FibrilTool ImageJ/Fiji plugin. To assess the degree of apparent bundling of the network, we developed several methods, some of which were borrowed from geostatistics. The final microtubule bundling response could notably be related to tissue growth velocity that was recorded by the indenter during compression. Because both input and output are quantified, this pipeline is an initial step towards correlating more precisely the cytoskeleton response to mechanical stress in living tissues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los niños que padecen trisomía 21 poseen una serie de características físicas, neurológicas y neuropsicológicas específicas, las cuales han sido investigadas a profundidad en diferentes países, de lo cual se han desarrollado protocolos de evaluación para estos niños acorde a su nacionalidad (García, 2010). A pesar de que Colombia es uno de los países en los cuales el síndrome de Down se presenta con mayor frecuencia, hasta la fecha, no se encuentran estudios que enfaticen en las habilidades neuropsicológicas de esta población específica, por lo cual no se han desarrollado protocolos de evaluación adecuados para los niños con síndrome este síndrome. Esta investigación se llevó acabo con una población de 88 niños a los cuales se les aplicó el inventario de desarrollo BATTELLE, y se identificó que los niños con síndrome Down de 5 a 12 años obtienen un puntaje que se encuentra en 4 desviaciones estándar por debajo de la media típica. Lo anterior demuestra una característica específica de esta población en cuanto a patrones de desarrollo en las cuales, se evidencia dificultad más importante en las área cognición y de la comunicación expresiva. Con respecto a los intervalos de edad se identificó que a lo largo de estos el desempeño en las áreas evaluadas decrece. esto puede estar relacionado con la mayor complejidad de los hitos del desarrollo para una edad esperada. Debido a que los hitos del desarrollo esperados varían a lo largo de los periodos del ciclo vital del ser humano, estos tienden a aumentar su complejidad en etapas del desarrollo más avanzados; como estos niños poseen una serie de dificultades en las funciones ejecutivas y cognición, no lograrán alcanzar dichos hitos del desarrollo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Social interactions have been the focus of social science research for a century, but their study has recently been revolutionized by novel data sources and by methods from computer science, network science, and complex systems science. The study of social interactions is crucial for understanding complex societal behaviours. Social interactions are naturally represented as networks, which have emerged as a unifying mathematical language to understand structural and dynamical aspects of socio-technical systems. Networks are, however, highly dimensional objects, especially when considering the scales of real-world systems and the need to model the temporal dimension. Hence the study of empirical data from social systems is challenging both from a conceptual and a computational standpoint. A possible approach to tackling such a challenge is to use dimensionality reduction techniques that represent network entities in a low-dimensional feature space, preserving some desired properties of the original data. Low-dimensional vector space representations, also known as network embeddings, have been extensively studied, also as a way to feed network data to machine learning algorithms. Network embeddings were initially developed for static networks and then extended to incorporate temporal network data. We focus on dimensionality reduction techniques for time-resolved social interaction data modelled as temporal networks. We introduce a novel embedding technique that models the temporal and structural similarities of events rather than nodes. Using empirical data on social interactions, we show that this representation captures information relevant for the study of dynamical processes unfolding over the network, such as epidemic spreading. We then turn to another large-scale dataset on social interactions: a popular Web-based crowdfunding platform. We show that tensor-based representations of the data and dimensionality reduction techniques such as tensor factorization allow us to uncover the structural and temporal aspects of the system and to relate them to geographic and temporal activity patterns.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Current computational neuroanatomy based on MRI focuses on morphological measures of the brain. We present recent methodological developments in quantitative MRI (qMRI) that provide standardized measures of the brain, which go beyond morphology. We show how biophysical modelling of qMRI data can provide quantitative histological measures of brain tissue, leading to the emerging field of in-vivo histology using MRI (hMRI). RECENT FINDINGS: qMRI has greatly improved the sensitivity and specificity of computational neuroanatomy studies. qMRI metrics can also be used as direct indicators of the mechanisms driving observed morphological findings. For hMRI, biophysical models of the MRI signal are being developed to directly access histological information such as cortical myelination, axonal diameters or axonal g-ratio in white matter. Emerging results indicate promising prospects for the combined study of brain microstructure and function. SUMMARY: Non-invasive brain tissue characterization using qMRI or hMRI has significant implications for both research and clinics. Both approaches improve comparability across sites and time points, facilitating multicentre/longitudinal studies and standardized diagnostics. hMRI is expected to shed new light on the relationship between brain microstructure, function and behaviour, both in health and disease, and become an indispensable addition to computational neuroanatomy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations in the SPG4 gene (SPG4-HSP) are the most frequent cause of hereditary spastic paraplegia, but the extent of the neurodegeneration related to the disease is not yet known. Therefore, our objective is to identify regions of the central nervous system damaged in patients with SPG4-HSP using a multi-modal neuroimaging approach. In addition, we aimed to identify possible clinical correlates of such damage. Eleven patients (mean age 46.0 ± 15.0 years, 8 men) with molecular confirmation of hereditary spastic paraplegia, and 23 matched healthy controls (mean age 51.4 ± 14.1years, 17 men) underwent MRI scans in a 3T scanner. We used 3D T1 images to perform volumetric measurements of the brain and spinal cord. We then performed tract-based spatial statistics and tractography analyses of diffusion tensor images to assess microstructural integrity of white matter tracts. Disease severity was quantified with the Spastic Paraplegia Rating Scale. Correlations were then carried out between MRI metrics and clinical data. Volumetric analyses did not identify macroscopic abnormalities in the brain of hereditary spastic paraplegia patients. In contrast, we found extensive fractional anisotropy reduction in the corticospinal tracts, cingulate gyri and splenium of the corpus callosum. Spinal cord morphometry identified atrophy without flattening in the group of patients with hereditary spastic paraplegia. Fractional anisotropy of the corpus callosum and pyramidal tracts did correlate with disease severity. Hereditary spastic paraplegia is characterized by relative sparing of the cortical mantle and remarkable damage to the distal portions of the corticospinal tracts, extending into the spinal cord.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although cross-sectional diffusion tensor imaging (DTI) studies revealed significant white matter changes in mild cognitive impairment (MCI), the utility of this technique in predicting further cognitive decline is debated. Thirty-five healthy controls (HC) and 67 MCI subjects with DTI baseline data were neuropsychologically assessed at one year. Among them, there were 40 stable (sMCI; 9 single domain amnestic, 7 single domain frontal, 24 multiple domain) and 27 were progressive (pMCI; 7 single domain amnestic, 4 single domain frontal, 16 multiple domain). Fractional anisotropy (FA) and longitudinal, radial, and mean diffusivity were measured using Tract-Based Spatial Statistics. Statistics included group comparisons and individual classification of MCI cases using support vector machines (SVM). FA was significantly higher in HC compared to MCI in a distributed network including the ventral part of the corpus callosum, right temporal and frontal pathways. There were no significant group-level differences between sMCI versus pMCI or between MCI subtypes after correction for multiple comparisons. However, SVM analysis allowed for an individual classification with accuracies up to 91.4% (HC versus MCI) and 98.4% (sMCI versus pMCI). When considering the MCI subgroups separately, the minimum SVM classification accuracy for stable versus progressive cognitive decline was 97.5% in the multiple domain MCI group. SVM analysis of DTI data provided highly accurate individual classification of stable versus progressive MCI regardless of MCI subtype, indicating that this method may become an easily applicable tool for early individual detection of MCI subjects evolving to dementia.