947 resultados para Tendon repair
Resumo:
All over the world, many earth buildings are deteriorating due to lack of maintenance and repair. Repairs on rammed earth walls are mainly done with mortars, by rendering application; however, often the repair is inadequate, resorting to the use of incompatible materials, including cement-based mortars. It has been observed that such interventions, in walls that until that day only had presented natural ageing issues, created new problems, much more dangerous for the building than the previous ones, causing serious deficiencies in this type of construction. One of the problems is that the detachment of the new cement-based mortar rendering only occurs after some time but, until that occurrence, degradations develop in the wall itself. When the render detaches, instead of needing only a new render, the surface has to be repaired in depth, with a repair mortar. Consequently, it has been stablished that the renders, and particularly repair mortars, should have physical, mechanical and chemical properties similar to those of the rammed earth walls. This article intends to contribute to a better knowledge of earth-based mortars used to repair the surface of rammed earth walls. The studied mortars are based on four types of earth: three of them were collected from non-deteriorated parts of walls of unstabilized rammed earth buildings located in Alentejo region, south of Portugal; the fourth is a commercial earth, consisting mainly of clay. Other components were also used, particularly: sand to control shrinkage; binders stabilizers such as dry hydrated air-lime, natural hydraulic lime, Portland cement and natural cement; as well as natural vegetal fibers (hemp fibers). The experimental analysis of the mortars in the fresh state consisted in determining the consistency by flow table and the bulk density. In the hardened state, the tests made it possible to evaluate the following properties: linear and volumetric shrinkage; capillary water absorption; drying capacity; dynamic modulus of elasticity; flexural and compressive strength.
Resumo:
OBJECTIVE: The objective of this study is to evaluate the benefits of drainage in the Stoppa procedure for inguinal repair. PATIENTS AND METHODS: The use of a suction drain was randomized at the end of the surgical intervention in 26 male patients undergoing inguinal hernia repair, divided into 2 groups: Group A, 12 patients undergoing drainage, and group B, 14 patients not undergoing drainage. On the second postoperative day, all patients underwent abdominal pelvic computed tomography scan examination to detect the presence of abdominal fluid collection. RESULTS: In group A, no patient developed fluid collection in the preperitoneal space, and 1 patient presented with an abscess in the preperitoneal space on the 15th postoperative day. In group B, 12 patients presented with fluid collections in the preperitoneal space on computed tomography scan evaluation. However, only 3 patients presented minor complications. None of the patients developed a major complication. CONCLUSION: The use of suction drainage with the Stoppa procedure does not provide any benefit.
Resumo:
Musculoskeletal diseases are one of the leading causes of disability worldwide. Tendon injuries are responsible for substantial morbidity, pain and disability. Tissue engineering strategies aim at translating tendon structure into biomimetic materials. The main goal of the present study is to develop microengineered hydrogel fibers through the combination of microfabrication and chemical interactions between oppositely charged polyelectrolytes. For this, methacrylated hyaluronic acid (MeHA) and chondroitin sulfate (MeCS) were combined with chitosan (CHT). Hydrogel fibers were obtained by injecting polymer solutions (either MeHA or MeHA/MeCS and CHT) in separate microchannels that join at a y-junction, with the materials interacting upon contact at the interface. To evaluate cell behavior, human tendon derived cells (hTDCs) were isolated from tendon surplus samples during orthopedic surgeries and seeded on top of the fibers. hTDCs adhered to the surface of the fibers, remaining viable, and were found to be expressing CD44, the receptor for hyaluronic acid. The synthesis of hydrogel fibers crosslinkable through both physical and chemical mechanisms combined with microfabrication technology allows the development of biomimetic structures with parallel fibers being formed towards the replication of tendon tissue architecture.
Tendon regeneration through a scaffold-free approach: development of tenogenic magnetic hASCs sheets
Resumo:
Tendon's regeneration is limited, demanding for cell-based strategies to fully restore their functionality upon injury. The concept of magnetic force-based TE(1), generally using magnetic nanoparticles may enable, for example, stem cell stimulation and/or remote control over TE constructs. Thus, we originally propose the development of magnetic cell sheets (magCSs) with tenogenic capability, aimed at promoting tendon's regeneration. A Tenomodulin (TNMD+) subpopulation was sorted from human adipose stem cells (hASCs), using TNMD-coated immunomagnetic beads(2) and used as cell source for the development of magCSs. Briefly, cells were labeled with iron oxide composite particles (Micromod) and cultured for 7 days in α-MEM medium with or without magnetic stimulation provided by a magnetic device (nanoTherics). CSs were retrieved from the plates using magnet attraction as contiguous sheets of cells within its own deposited ECM.
Resumo:
Cell-based approaches in tissue engineering (TE) have been barely explored for the treatment of tendon and ligament (T/L) tissues, requiring the establishment of a widely available cell source with tenogenic potential. As T/L cells are scarce, stem cells may provide a good alternative. Understanding how resident cells behave in vitro, might be useful for recapitulating the tenogenic potential of stem cells for tendon TE applications. Therefore, we propose to isolate and characterize human T/L-derived cells (hTDCs and hLDCs) and compare their regenerative potential with stem cells from adipose tissue (hASCs) and amniotic fluid (hAFSCs)(1). T/L cells were isolated using different procedures and stem cells isolated as described elsewhere(1). Moreover, T/L cells were stimu- lated into the three mesenchymal lineages, using standard differentia- tion media. Cells were characterized for the typical stem cell markers as well as T/L related markers, namely tenascin-C, collagen I and III, decorin and scleraxis, using different complementary techniques such as real time RT-PCR, immunocytochemistry and flow cytometry. No differences were observed between T/L in gene expression and protein deposition. T/L cells were mostly positive for stem ness markers (CD73/CD90/CD105), and have the potential to differentiate towards osteogenesis, chondrogenesis and adipogenesis, demonstrated by the positive staining for AlizarinRed, SafraninO, ToluidineBlue and OilRed. hASCs and hAFSCs exhibit positive expression of all tenogenic mark- ers, although at lower levels than hTDCs and hLDCs. Nevertheless, stem cells availability is key factor in TE strategies, despite that it’s still required optimization to direct their tenogenic phenotype.
Resumo:
Tendon tissue engineering (TE) requires tailoring scaffolds designs and properties to the anatomical and functional requirements of tendons located in different regions of the body. Cell sourcing is also of utmost importance as tendon cells are scarce. Recently, we have found that it is possible to direct the tenogenic differentiation of Amniotic fluid and Adipose tissue derived stem cells (hAFSCs and hASCs), and also that there are hASCs subpopulations that might be more prone to tenogenic differentiation. Nevertheless, biochemical stimulation may not be enough to develop functional TE substitutes for a tissue that is known to be highly dependent on mechanical loading.
Resumo:
In this research, five types of polymer repair materials were selected for investigation of the influence of sample shape, deformation rate and test temperature on the mechanical properties determined with an uniaxial tensile test. The results showed the clear effect of measurement conditions on tensile strength, elongation and modulus of elasticity. The highest tensile strength and modulus of elasticity were exhibited by epoxy resin for the filling of concrete cracks, which achieved 1% elongation. The lowest coefficient of dispersion characterized the results of tensile test carried out using dumbbell samples at a deformation rate of 50 mm/min. The effect of temperature varied with the material type.
Resumo:
Background Despite the small size of the incision, the scar left by open repair of epigastric hernia in children is unaesthetic. Few laparoscopic approaches to epigastric hernia repair have been previously proposed, but none has gain wide acceptance from pediatric surgeons. In this study, we present our experience with a scarless laparo- scopic approach using a percutaneous suturing technique for epigastric hernia repair in children. Methods Ten consecutive patients presenting with epi- gastric hernia 15 mm or further from the umbilicus were submitted to laparoscopic hernia repair. A 5-mm 308-angle laparoscope is introduced through a umbilical trocar and a 3-mm laparoscopic dissector is introduced through a stab incision in the right flank. After opening and dissecting the parietal peritoneum, the fascial defect is identified and closed using 2–0 polyglactin thread through a percutaneous suturing technique. Intraoperative and postoperative clinical data were collected. Results All patients were successfully submitted to la- paroscopic epigastric hernia repair. Median age at surgery was 79 months old and the median distance from the um- bilicus to the epigastric defect was 4 cm. Operative time ranged from 35 to 75 min. Every hernia was successfully closed without any incidents. Follow-up period ranges from 2 to 12 months. No postoperative complications or recurrence was registered. No scar was visible in these patients. Conclusion This scarless laparoscopic technique for epi- gastric hernia repair is safe and reliable. We believe this technique might become gold standard of care in the near future.
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
Ideal candidates for the repair of robust biological tissues should exhibit diverse features such as biocompatibility, strength, toughness, self-healing ability and a well-defined structure. Among the available biomaterials, hydrogels, as highly hydrated 3D-crosslinked polymeric networks, are promising for Tissue Engineering purposes as result of their high resemblance with native extracellular matrix. However, these polymeric structures often exhibit a poor mechanical behavior, hampering their use in load-bearing applications. During the last years, several efforts have been made to create new strategies and concepts to fabricate strong and tough hydrogels. Although it is already possible to shape the mechanical properties of artificial hydrogels to mimic biotissues, critical issues regarding, for instance, their biocompatibility and hierarchical structure are often neglected. Therefore, this review covers the structural and mechanical characteristics of the developed methodologies to toughen hydrogels, highlighting some pioneering efforts employed to combine the aforementioned properties in natural-based hydrogels.
Resumo:
OBJECTIVE: To study the healing process of the myocardium in hypertensive rats undergoing inhibition of nitric oxide synthesis. METHODS: Two groups of animals were studied: one received L-NAME, 12mg/kg/day, and the other was a control group. The presence of type III collagen, fibronectin, and alpha-smooth muscle actin-positive cells was assessed by immunohistochemistry. RESULTS: Fibronectin was seen in both early and late lesions, while type III collagen was seen mainly in areas of incomplete healing, situated among myocytes and around the intramyocardial branches of the coronary arteries. Areas representing early and late lesions showed a population of spindle-shaped cells. Immunohistochemistry showed that these cells were positive for alpha-smooth muscle actin. CONCLUSION: In the myocardium of hypertensive rats, the alpha-smooth muscle actin-positive cells are related to the accumulation of type III collagen and fibronectin in the areas of myocardial damage.
Resumo:
OBJECTIVE - To analyze the immediate and late results of mitral valve repair with quadrangular resection of the posterior leaflet without the use of a prosthetic ring annuloplasty. METHODS - Using this technique, 118 patients with mitral valve prolapse who underwent mitral repair from January '84 through December '96 were studied. Age ranged from 30 to 86 (mean = 59.1±11.8) years and 62.7% were males. An associated surgery was performed in 22% of the patients, and coronary artery bypass graft was the most frequently performed surgery (15 patients - 12.7%). In 20 (16.9%) patients other associated techniques of mitral valve repair were used and shortening of elongated chordae tendineae was the most frequent one (6 patients). RESULTS - Immediate mortality was 0.9% (one patient). Long-term rates for thromboembolism, endocarditis, re-operation and death in the late postoperative period were 0.4%, 0.4%, 1.7% and 2.2% patients/year, respectively. The actuarial curve of survival was 83.8±8.6% over 12 years; survival free from re-operation was 91.8±4.3%, free from endocarditis was 99.2±0.8% and free from thromboembolism was 99.2±0.8%. In the late postoperative period, 93.8% of the patients were in functional class 1 (NYHA), with a complete follow-up in 89.7% of the patients. CONCLUSION - Patients with mitral valve prolapse who undergo mitral valve repair using this technique have a satisfactory prognosis over 12 years.
Resumo:
OBJECTIVE: To describe a surgical procedure utilizing a malleable bovine pericardium ring in mitral valve repair and clinical and echodopplercadiographic results. METHODS: Thirty-two (25 female and 7 male) patients, aged between 9 and 66 (M=36.4±17.2) years, were studied over a 16-month period, with 100% follow-up. In 23 (72%) of the patients, the mitral approach was the only one applied; 9 patients underwent associated operations. The technique applied consisted of measuring the perimeter of the anterior leaflet and implanting, according to this measurement, a flexible bovine pericardium prosthesis for reinforcement and conformation of the posterior mitral annulus, reducing it to the perimeter of the anterior leaflet with adjustment of the valve apparatus. RESULTS: The patient survival ratio was 93.8%, with 2 (6.2%) fatal outcomes, one from unknown causes, the other due to left ventricular failure. Only one reoperation was performed. On echodopplercardiography, 88% of the patients had functional recovery of the mitral valve (50% without and 38% with mild insufficiency and no hemodynamic repercussions). Of four (12%) of the remaining patients, 6% had moderate and 6% had seigre insufficiency. Twenty-eight percent of class II patients and 72% of class III patients passed into classes I (65%), II (32%), and III (3%), according to NYHA classification criteria. CONCLUSION: Being flexible, the bovine pericardium ring fit perfectly into the valve annulus, taking into account its geometry and contractility. Valve repair was shown to be reproducible, demonstrating significant advantages during patient evolution, which did not require anticoagulation measures.
Resumo:
We report the case of a 21-year-old male with high-output heart failure due to a femoral arteriovenous fistula caused by a firearm wound. A new balloon expandable stent covered with polytetrafluorethylene was implanted in the artery to occlude the arteriovenous fistula. The fistula was immediately occluded and the artery remained patent. On the following day, the patient felt much better, with no symptoms of heart failure. Additional follow-up is required to assure the usefulness of this less invasive procedure in the treatment of arteriovenous fistulas.
Resumo:
We report the case of a patient with a pseudoaneurysm of the ascending aortic clinically diagnosed 5 months after surgical replacement of the aortic valve. Diagnosis was confirmed with the aid of two-dimensional echocardiography and helicoidal angiotomography. The corrective surgery, which consisted of a reinforced suture of the communication with the ascending aorta after opening and aspiration of the cavity of the pseudoaneurysm, was successfully performed through a complete sternotomy using extracorporeal circulation, femorofemoral cannulation, and moderate hypothermia, with no aortic clamping.