976 resultados para Temporal models
Resumo:
Wernicke’s aphasia occurs following a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory-verbal comprehension is significantly impaired in Wernicke’s aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used fMRI to investigate the neural basis of written word and picture semantic processing in Wernicke’s aphasia, with the wider aim of examining how the semantic system is altered following damage to the classical comprehension regions. Twelve participants with Wernicke’s aphasia and twelve control participants performed semantic animate-inanimate judgements and a visual height judgement baseline task. Whole brain and ROI analysis in Wernicke’s aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke’s aphasia group displayed an “over-activation” in comparison to control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke’s aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results concord with models which indicate that the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions.
Resumo:
Scattering and absorption by aerosol in anthropogenically perturbed air masses over Europe has been measured using instrumentation flown on the UK’s BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM) on 14 flights during the EUCAARI-LONGREX campaign in May 2008. The geographical and temporal variations of the derived shortwave optical properties of aerosol are presented. Values of single scattering albedo of dry aerosol at 550 nm varied considerably from 0.86 to near unity, with a campaign average of 0.93 ± 0.03. Dry aerosol optical depths ranged from 0.030 ± 0.009 to 0.24 ± 0.07. An optical properties closure study comparing calculations from composition data and Mie scattering code with the measured properties is presented. Agreement to within measurement uncertainties of 30% can be achieved for both scattering and absorption,but the latter is shown to be sensitive to the refractive indices chosen for organic aerosols, and to a lesser extent black carbon, as well as being highly dependent on the accuracy of the absorption measurements. Agreement with the measured absorption can be achieved either if organic carbon is assumed to be weakly absorbing, or if the organic aerosol is purely scattering and the absorption measurement is an overestimate due to the presence of large amounts of organic carbon. Refractive indices could not be inferred conclusively due to this uncertainty, despite the enhancement in methodology compared to previous studies that derived from the use of the black carbon measurements. Hygroscopic growth curves derived from the wet nephelometer indicate moderate water uptake by the aerosol with a campaign mean f (RH) value (ratio in scattering) of 1.5 (range from 1.23 to 1.63) at 80% relative humidity. This value is qualitatively consistent with the major chemical components of the aerosol measured by the aerosol mass spectrometer, which are primarily mixed organics and nitrate and some sulphate.
Resumo:
This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a−1 (range 34–144 Tg a−1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a−1 (range 13–121 Tg a−1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a−1 (range 16–121 Tg a−1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a−1; range 13–20 Tg a−1, with one model at 37 Tg a−1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8–9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a−1 (range 28–209 Tg a−1), which is on average 85% of the total OA deposition. Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model–observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model–measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA aging, although the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to −0.62 (−0.51) based on the comparison against OC (OA) urban data of all models at the surface, −0.15 (+0.51) when compared with remote measurements, and −0.30 for marine locations with OC data. The mean temporal correlations across all stations are low when compared with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote stations, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that knowledge about the processes that govern aerosol processing, transport and removal, on top of their sources, is important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. However, the complexity is needed in models in order to distinguish between anthropogenic and natural OA as needed for climate mitigation, and to calculate the impact of OA on climate accurately.
Resumo:
The Monte Carlo Independent Column Approximation (McICA) is a flexible method for representing subgrid-scale cloud inhomogeneity in radiative transfer schemes. It does, however, introduce conditional random errors but these have been shown to have little effect on climate simulations, where spatial and temporal scales of interest are large enough for effects of noise to be averaged out. This article considers the effect of McICA noise on a numerical weather prediction (NWP) model, where the time and spatial scales of interest are much closer to those at which the errors manifest themselves; this, as we show, means that noise is more significant. We suggest methods for efficiently reducing the magnitude of McICA noise and test these methods in a global NWP version of the UK Met Office Unified Model (MetUM). The resultant errors are put into context by comparison with errors due to the widely used assumption of maximum-random-overlap of plane-parallel homogeneous cloud. For a simple implementation of the McICA scheme, forecasts of near-surface temperature are found to be worse than those obtained using the plane-parallel, maximum-random-overlap representation of clouds. However, by applying the methods suggested in this article, we can reduce noise enough to give forecasts of near-surface temperature that are an improvement on the plane-parallel maximum-random-overlap forecasts. We conclude that the McICA scheme can be used to improve the representation of clouds in NWP models, with the provision that the associated noise is sufficiently small.
Resumo:
Spatial and temporal fluctuations in the concentration field from an ensemble of continuous point-source releases in a regular building array are analyzed from data generated by direct numerical simulations. The release is of a passive scalar under conditions of neutral stability. Results are related to the underlying flow structure by contrasting data for an imposed wind direction of 0 deg and 45 deg relative to the buildings. Furthermore, the effects of distance from the source and vicinity to the plume centreline on the spatial and temporal variability are documented. The general picture that emerges is that this particular geometry splits the flow domain into segments (e.g. “streets” and “intersections”) in each of which the air is, to a first approximation, well mixed. Notable exceptions to this general rule include regions close to the source, near the plume edge, and in unobstructed channels when the flow is aligned. In the oblique (45 deg) case the strongly three-dimensional nature of the flow enhances mixing of a scalar within the canopy leading to reduced temporal and spatial concentration fluctuations within the plume core. These fluctuations are in general larger for the parallel flow (0 deg) case, especially so in the long unobstructed channels. Due to the more complex flow structure in the canyon-type streets behind buildings, fluctuations are lower than in the open channels, though still substantially larger than for oblique flow. These results are relevant to the formulation of simple models for dispersion in urban areas and to the quantification of the uncertainties in their predictions.
Resumo:
Social behavior depends on the integrity of social brain circuitry. The temporal lobe is an important part of the social brain, and manifests morphological and functional alterations in autism spectrum disorders (ASD). Rats with temporal lobe epilepsy (TLE), induced with pilocarpine, were subjected to a social discrimination test that has been used to investigate potential animal models of ASD, and the results were compared with those for the control group. Rats with TLE exhibited fewer social behaviors than controls. No differences were observed in nonsocial behavior between groups. The results suggest an important role for the temporal lobe in regulating social behaviors. This animal model might be used to explore some questions about ASD pathophysiology. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The relationship between sleep and epilepsy is both complex and clinically significant. Temporal lobe epilepsy (TLE) influences sleep architecture, while sleep plays an important role in facilitating and/or inhibiting possible epileptic seizures. The pilocarpine experimental model reproduces several features of human temporal lobe epilepsy and is one of the most widely used models in basic research. The aim of the present study was to characterize, behaviorally and electrophysiologically, the phases of sleep-wake cycles (SWC) in male rats with pilocarpine-induced epilepsy. Epileptic rats presented spikes in all phases of the SWC as well as atypical cortical synchronization during attentive wakefulness and paradoxical sleep. The architecture of the sleep-wake phases was altered in epileptic rats, as was the integrity of the SWC. Because our findings reproduce many relevant features observed in patients with epilepsy, this model is suitable to study sleep dysfunction in epilepsy. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This paper proposes a spatial-temporal downscaling approach to construction of the intensity-duration-frequency (IDF) relations at a local site in the context of climate change and variability. More specifically, the proposed approach is based on a combination of a spatial downscaling method to link large-scale climate variables given by General Circulation Model (GCM) simulations with daily extreme precipitations at a site and a temporal downscaling procedure to describe the relationships between daily and sub-daily extreme precipitations based on the scaling General Extreme Value (GEV) distribution. The feasibility and accuracy of the suggested method were assessed using rainfall data available at eight stations in Quebec (Canada) for the 1961-2000 period and climate simulations under four different climate change scenarios provided by the Canadian (CGCM3) and UK (HadCM3) GCM models. Results of this application have indicated that it is feasible to link sub-daily extreme rainfalls at a local site with large-scale GCM-based daily climate predictors for the construction of the IDF relations for present (1961-1990) and future (2020s, 2050s, and 2080s) periods at a given site under different climate change scenarios. In addition, it was found that annual maximum rainfalls downscaled from the HadCM3 displayed a smaller change in the future, while those values estimated from the CGCM3 indicated a large increasing trend for future periods. This result has demonstrated the presence of high uncertainty in climate simulations provided by different GCMs. In summary, the proposed spatial-temporal downscaling method provided an essential tool for the estimation of extreme rainfalls that are required for various climate-related impact assessment studies for a given region.
Resumo:
In the last years extreme hydrometeorological phenomena have increased in number and intensity affecting the inhabitants of various regions, an example of these effects are the central basins of the Gulf of Mexico (CBGM) that they have been affected by 55.2% with floods and especially the state of Veracruz (1999-2013), leaving economic, social and environmental losses. Mexico currently lacks sufficient hydrological studies for the measurement of volumes in rivers, since is convenient to create a hydrological model (HM) suited to the quality and quantity of the geographic and climatic information that is reliable and affordable. Therefore this research compares the semi-distributed hydrological model (SHM) and the global hydrological model (GHM), with respect to the volumes of runoff and achieve to predict flood areas, furthermore, were analyzed extreme hydrometeorological phenomena in the CBGM, by modeling the Hydrologic Modeling System (HEC-HMS) which is a SHM and the Modèle Hydrologique Simplifié à I'Extrême (MOHYSE) which is a GHM, to evaluate the results and compare which model is suitable for tropical conditions to propose public policies for integrated basins management and flood prevention. Thus it was determined the temporal and spatial framework of the analyzed basins according to hurricanes and floods. It were developed the SHM and GHM models, which were calibrated, validated and compared the results to identify the sensitivity to the real model. It was concluded that both models conform to tropical conditions of the CBGM, having MOHYSE further approximation to the real model. Worth mentioning that in Mexico there is not enough information, besides there are no records of MOHYSE use in Mexico, so it can be a useful tool for determining runoff volumes. Finally, with the SHM and the GHM were generated climate change scenarios to develop risk studies creating a risk map for urban planning, agro-hydrological and territorial organization.
Resumo:
Este trabalho tem por objetivo verificar o impacto que más práticas na gestão da Agrenco, empresa listada na bolsa de valores brasileira sob a forma de BDRs (Brazilian Depositary Receipts), trouxe para a precificação dos demais ativos listados sob a mesma estrutura. Estudos anteriores, como os de Saudagaran (1988) e Pagano (2001), focaram em temas referentes aos motivos que influenciaram as companhias a listarem suas ações em diferentes bolsas. Entender as conseqüências do evento Agrenco é importante para todos os participantes do mercado financeiro. O estudo contemplou uma amostra das principais empresas listadas sobre a forma de BDRs desde a data de seus IPOs até 26/08/2008. Primeiramente efetuou-se uma análise do comportamento gráfico dos preços dos ativos das BDRs listadas. Posteriormente elaborou-se três regressões múltiplas utilizando-se um modelo de série temporal (modelo AR – auto-regressivo), com análise de quebra estrutural e uso de variável Dummy. A primeira regressão relaciona a variável Agrenco com índices de BDRs constituídos especificamente para este estudo, a segunda inclui uma variável Dummy de intercepto e a terceira combina a variável Dummy de intercepto com uma variável Dummy de inclinação. As regressões têm o objetivo de se averiguar se o evento da Agrenco afetou sistematicamente os preços das ações listadas sob a mesma forma. A maior contribuição do estudo foi verificar que a má prática de gestão na Agrenco, listada sob a forma de BDR, contaminou o retorno de outras empresas que se utilizaram do mesmo veículo como fonte de captação de recursos. Os resultados apontaram, pela análise gráfica, que não houve um descolamento da valorização da maior parte das ações uma semana depois do anúncio dos problemas financeiros da Agrenco em relação a carteira téorica de mercado (IBOVESPA). Entretanto, os resultados dos testes econométricos apontaram que houve impacto do evento Agrenco sobre os retornos das ações listadas sob a forma de BDR.
Resumo:
No presente trabalho descrevemos nossos resultados relativos à investigação da dinâmica de solvatação mecânica por meio de simulações por dinâmica molecular, respeitando o regime da resposta linear, em sistemas-modelo de argônio líquido com um soluto monoatômico ou diatômico dissolvido. Estudamos sistematicamente a influência dos parâmetros moleculares dos solutos (tamanho, polarizabilidade) e da densidade frente a vários modelos de solvatação. Funções de Correlação Temporal da Energia de Solvatação foram calculadas com relação à correlações de n-corpos (n = 2; 3) distinguindo interações repulsivas e atrativas para ambos os sistemas líquidos. Também obtivemos segundas derivadas temporais dessas funções referindo-se à parcelas translacionais, rotacionais e roto-translacionais na solução do diatômico. Encontramos que funções de correlação temporal coletivas podem ser razoavelmente bem aproximadas por correlações binárias a densidades baixas e, a densidades altas, correlações ternárias tornam-se mais importantes produzindo um descorrelacionamento mais rápido das funções coletivas devido a efeitos de cancelamento parciais. As funções de correlação para interações repulsivas e atrativas exibem comportamentos dinâmicos independentes do modelo de solvatação devido a fatores de escalonamento linear que afetam apenas as amplitudes das dessas funções de correlação temporal. Em geral, os sistemas com grau de liberdade rotacional apresentam tempos de correlação mais curtos para a dinâmica coletiva e tempos de correlação mais longos para as funções binárias e ternárias. Finalmente, esse estudo mostra que os sistemas contendo o diatômico relaxam-se predominantemente por mecanismos translacionais binários em modelos de solvatação envolvendo alterações apenas na polarizabilidade do soluto, e por mecanismos rotacionais atrativos binários em modelos envolvendo alterações no comprimento de ligação.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho foi avaliar o desenvolvimento da vegetação submersa, em termos da altura dos dosséis, considerando as dimensões espaço e tempo, usando técnicas de hidroacústica. Foram realizados dez levantamentos de campo no período de outubro de 2009 a dezembro de 2010, para aquisição de pontos georreferenciados de altura dos dosséis, frequência de ocorrência de vegetação, bem como de profundidade. Medidas limnológicas também foram feitas, a fim de verificar se suas variações poderiam explicar a distribuição espacial das macrófitas. Os dados de vegetação foram analisados por levantamento e por profundidade; além disso, compuseram um banco de dados implementado em um Sistema de Informação Geográfica. Foram então interpolados e das superfícies resultantes foram geradas cartas, que indicam a distribuição espacial do crescimento ou decaimento da vegetação. Modelos em três dimensões dos dosséis foram produzidos, para representar a ocupação volumétrica das macrófitas submersas. Os resultados mostraram que houve significativa redução da infestação de um ano para outro. Observou-se, ainda, que os maiores dosséis concentram-se em uma profundidade de 2 a 4 m. O mapeamento identificou tanto áreas de crescimento quanto de decaimento, distribuídas de modo heterogêneo. Não foi possível observar relação direta das medidas limnológicas com a dinâmica da vegetação, pois não apresentaram variação espaço-temporal significativa. Foi possível estimar o volume ocupado pelas macrófitas submersas, e a tendência observada é de que o aumento de volume é precedido por uma aparente homogeneização dos dosséis.
Resumo:
INTRODUÇÃO: A malaria é uma doença endêmica na região da Amazônia Brasileira, e a detecção de possíveis fatores de risco pode ser de grande interesse às autoridades em saúde pública. O objetivo deste artigo é investigar a associação entre variáveis ambientais e os registros anuais de malária na região amazônica usando métodos bayesianos espaço-temporais. MÉTODOS: Utilizaram-se modelos de regressão espaço-temporais de Poisson para analisar os dados anuais de contagem de casos de malária entre os anos de 1999 a 2008, considerando a presença de alguns fatores como a taxa de desflorestamento. em uma abordagem bayesiana, as inferências foram obtidas por métodos Monte Carlo em cadeias de Markov (MCMC) que simularam amostras para a distribuição conjunta a posteriori de interesse. A discriminação de diferentes modelos também foi discutida. RESULTADOS: O modelo aqui proposto sugeriu que a taxa de desflorestamento, o número de habitants por km² e o índice de desenvolvimento humano (IDH) são importantes para a predição de casos de malária. CONCLUSÕES: É possível concluir que o desenvolvimento humano, o crescimento populacional, o desflorestamento e as alterações ecológicas associadas a estes fatores estão associados ao aumento do risco de malária. Pode-se ainda concluir que o uso de modelos de regressão de Poisson que capturam o efeito temporal e espacial em um enfoque bayesiano é uma boa estratégia para modelar dados de contagem de malária.