996 resultados para Temperature Distributions
Resumo:
The work presented in my thesis addresses the two cornerstones of modern astronomy: Observation and Instrumentation. Part I deals with the observation of two nearby active galaxies, the Seyfert 2 galaxy NGC 1433 and the Seyfert 1 galaxy NGC 1566, both at a distance of $\sim10$ Mpc, which are part of the Nuclei of Galaxies (NUGA) sample. It is well established that every galaxy harbors a super massive black hole (SMBH) at its center. Furthermore, there seems to be a fundamental correlation between the stellar bulge and SMBH masses. Simulations show that massive feedback, e.g., powerful outflows, in Quasi Stellar Objects (QSOs) has an impact on the mutual growth of bulge and SMBH. Nearby galaxies follow this relation but accrete mass at much lower rates. This gives rise to the following questions: Which mechanisms allow feeding of nearby Active Galactic Nuclei (AGN)? Is this feeding triggered by events, e.g., star formation, nuclear spirals, outflows, on $\sim500$ pc scales around the AGN? Does feedback on these scales play a role in quenching the feeding process? Does it have an effect on the star formation close to the nucleus? To answer these questions I have carried out observations with the Spectrograph for INtegral Field Observation in the Near Infrared (SINFONI) at the Very Large Telescope (VLT) situated on Cerro Paranal in Chile. I have reduced and analyzed the recorded data, which contain spatial and spectral information in the H-band ($1.45 \mic-1.85 \mic$) and K-band ($1.95 \mic-2.45 \mic$) on the central $10\arcsec\times10\arcsec$ of the observed galaxies. Additionally, Atacama Large Millimeter/Sub-millimeter Array (ALMA) data at $350$ GHz ($\sim0.87$ mm) as well as optical high resolution Hubble Space Telescope (HST) images are used for the analysis. For NGC 1433 I deduce from comparison of the distributions of gas, dust, and intensity of highly ionized emission lines that the galaxy center lies $\sim70$ pc north-northwest of the prior estimate. A velocity gradient is observed at the new center, which I interpret as a bipolar outflow, a circum nuclear disk, or a combination of both. At least one dust and gas arm leads from a $r\sim200$ pc ring towards the nucleus and might feed the SMBH. Two bright warm H$_2$ gas spots are detected that indicate hidden star formation or a spiral arm-arm interaction. From the stellar velocity dispersion (SVD) I estimate a SMBH mass of $\sim1.74\times10^7$ \msol. For NGC 1566 I observe a nuclear gas disk of $\sim150$ pc in radius with a spiral structure. I estimate the total mass of this disk to be $\sim5.4\times10^7$ \msol. What mechanisms excite the gas in the disk is not clear. Neither can the existence of outflows be proven nor is star formation detected over the whole disk. On one side of the spiral structure I detect a star forming region with an estimated star formation rate of $\sim2.6\times10^{-3}$ \msol\ yr$^{-1}$. From broad Br$\gamma$ emission and SVD I estimate a mean SMBH mass of $\sim5.3\times10^6$ \msol\ with an Eddington ratio of $\sim2\times10^{-3}$. Part II deals with the final tests of the Fringe and Flexure Tracker (FFTS) for LBT INterferometric Camera and the NIR/Visible Adaptive iNterferometer for Astronomy (LINC-NIRVANA) at the Large Binocular Telescope (LBT) in Arizona, USA, which I conducted. The FFTS is the subsystem that combines the two separate beams of the LBT and enables near-infrared interferometry with a significantly large field of view. The FFTS has a cryogenic system and an ambient temperature system which are separated by the baffle system. I redesigned this baffle to guarantee the functionality of the system after the final tests in the Cologne cryostat. The redesign did not affect any scientific performance of LINC-NIRVANA. I show in the final cooldown tests that the baffle fulfills the temperature requirement and stays $<110$ K whereas the moving stages in the ambient system stay $>273$ K, which was not given for the old baffle design. Additionally, I test the tilting flexure of the whole FFTS and show that accurate positioning of the detector and the tracking during observation can be guaranteed.
Resumo:
A significant focus of hydrothermal vent ecological studies has been to understand how species cope with various stressors through physiological tolerance and biochemical resistance. Yet, the environmental conditions experienced by vent species have not been well characterized. This objective requires continuous observations over time intervals that can capture environmental variability at scales that are relevant to animals. We used autonomous temperature logger arrays (four roughly parallel linear arrays of 12 loggers spaced every 10–12 cm) to study spatial and temporal variations in the thermal regime experienced by hydrothermal vent macrofauna at a diffuse flow vent. Hourly temperatures were recorded over eight months from 2010 to 2011 at Grotto vent in the Main Endeavour vent field on the Juan de Fuca Ridge, a focus area of the Ocean Networks Canada cabled observatory. The conspicuous animal assemblages in video footage contained Ridgeia piscesae tubeworms, gastropods (primarily Lepetodrilus fucensis), and polychaetes (polynoid scaleworms and the palm worm Paralvinella palmiformis). Two dimensional spatial gradients in temperature were generally stable over the deployment period. The average temperature recorded by all arrays, and in some individual loggers, revealed distinctive fluctuations in temperature that often corresponded with the tidal cycle. We postulate that this may be related to changes in bottom currents or fluctuations in vent discharge. A marked transient temperature increase lasting over a period of days was observed in April 2011. While the distributions and behavior of Juan de Fuca Ridge vent invertebrates may be partially constrained by environmental temperature and temperature tolerance, except for the one transient high-temperature event, observed fluid temperatures were generally similar to the thermal preferences for some species, and typically well below lethal temperatures for all species. Average temperatures of the four arrays ranged from 4.1 to 11.0 °C during the deployment, indicating that on an hourly timescale the temperature conditions in this tubeworm community were fairly moderate and stable. The generality of these findings and behavioural responses of vent organisms to predictable rhythmicity and non-periodic temperature shifts are areas for further investigation
Resumo:
As graphene has become one of the most important materials, there is renewed interest in other similar structures. One example is silicene, the silicon analogue of graphene. It shares some of the remarkable graphene properties, such as the Dirac cone, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.
Resumo:
We report the first measurements of the moments--mean (M), variance (σ(2)), skewness (S), and kurtosis (κ)--of the net-charge multiplicity distributions at midrapidity in Au+Au collisions at seven energies, ranging from sqrt[sNN]=7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net charge, and are sensitive to the location of the QCD critical point. We compare the products of the moments, σ(2)/M, Sσ, and κσ(2), with the expectations from Poisson and negative binomial distributions (NBDs). The Sσ values deviate from the Poisson baseline and are close to the NBD baseline, while the κσ(2) values tend to lie between the two. Within the present uncertainties, our data do not show nonmonotonic behavior as a function of collision energy. These measurements provide a valuable tool to extract the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.
Resumo:
Different storage conditions can induce changes in the colour and carotenoid profiles and levels in some fruits. The goal of this work was to evaluate the influence of low temperature storage on the colour and carotenoid synthesis in two banana cultivars: Prata and Nanicão. For this purpose, the carotenoids from the banana pulp were determined by HPLC-DAD-MS/MS, and the colour of the banana skin was determined by a colorimeter method. Ten carotenoids were identified, of which the major carotenoids were all-trans-lutein, all-trans-α-carotene and all-trans-β-carotene in both cultivars. The effect of the low temperatures was subjected to linear regression analysis. In cv. Prata, all-trans-α-carotene and all-trans-β-carotene were significantly affected by low temperature (p<0.01), with negative estimated values (β coefficients) indicating that during cold storage conditions, the concentrations of these carotenoids tended to decrease. In cv. Nanicão, no carotenoid was significantly affected by cold storage (p>0.05). The accumulation of carotenoids in this group may be because the metabolic pathways using these carotenoids were affected by storage at low temperatures. The colour of the fruits was not negatively affected by the low temperatures (p>0.05).
Resumo:
In this work, all publicly-accessible published findings on Alicyclobacillus acidoterrestris heat resistance in fruit beverages as affected by temperature and pH were compiled. Then, study characteristics (protocols, fruit and variety, °Brix, pH, temperature, heating medium, culture medium, inactivation method, strains, etc.) were extracted from the primary studies, and some of them incorporated to a meta-analysis mixed-effects linear model based on the basic Bigelow equation describing the heat resistance parameters of this bacterium. The model estimated mean D* values (time needed for one log reduction at a temperature of 95 °C and a pH of 3.5) of Alicyclobacillus in beverages of different fruits, two different concentration types, with and without bacteriocins, and with and without clarification. The zT (temperature change needed to cause one log reduction in D-values) estimated by the meta-analysis model were compared to those ('observed' zT values) reported in the primary studies, and in all cases they were within the confidence intervals of the model. The model was capable of predicting the heat resistance parameters of Alicyclobacillus in fruit beverages beyond the types available in the meta-analytical data. It is expected that the compilation of the thermal resistance of Alicyclobacillus in fruit beverages, carried out in this study, will be of utility to food quality managers in the determination or validation of the lethality of their current heat treatment processes.
Resumo:
Low temperatures negatively impact the metabolism of orange trees, and the extent of damage can be influenced by the rootstock. We evaluated the effects of low nocturnal temperatures on Valencia orange scions grafted on Rangpur lime or Swingle citrumelo rootstocks. We exposed six-month-old plants to night temperatures of 20ºC and 8ºC under controlled conditions. After decreasing the temperature to 8ºC, there were decreases in leaf CO2 assimilation, stomatal conductance, mesophyll conductance and CO2 concentration in the chloroplasts, in plant hydraulic conductivity and in the maximum electron transport rate driven ribulose-1,5-bisphosphate (RuBP) regeneration in plants grafted on both rootstocks. However, the effects of low night temperature were more severe in plants grafted on Rangpur rootstock, which also presented reduction in the maximum rate of RuBP carboxylation and in the maximum quantum efficiency of the PSII. In general, irreversible damage due to night chilling was found in the photosynthetic apparatus of plants grafted on Rangpur lime. Low night temperatures induced similar changes in the antioxidant metabolism, preventing oxidative damage in citrus leaves on both rootstocks. As photosynthesis is linked to plant growth, our findings indicate that the rootstock may improve the performance of citrus trees in environments with low night temperatures, with Swingle rootstock improving the photosynthetic acclimation in leaves of orange plants.
Resumo:
This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39) was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39) not to receive the bleaching agent. Three groups (n=13) were formed for each condition (bleach or no bleach) according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LED)laser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p<0.01) among the groups. When the bleaching agent was not applied, the halogen light induced the highest temperature rise (2.38±0.66ºC). The LED unit produced the lowest temperature increase (0.29±0.13ºC); but there was no significant difference between LED unit and LED-laser system (0.35±0.15ºC) (p>0.01). When the bleaching agent was applied, there were significant differences among groups (p<0.01): halogen light induced the highest temperature rise (1.41±0.64ºC), and LED-laser system the lowest (0.33±0.12ºC); however, there was no difference between LED-laser system and LED unit (0.44±0.11ºC). LED and LED-laser system did not differ significantly from each other regardless the temperature rise occurred with or without bleaching agent application. It may be concluded that during light-activated tooth bleaching, with or without the bleaching agent, halogen light promoted higher pulp chamber temperature rise than LED unit and LED-laser system. The tested light-curing units provided increases in the pulp chamber temperature that were compatible with pulpal health.
Resumo:
Studies have shown the cariostatic effect of Er,Cr:YSGG (2.78 mm) laser irradiation on human enamel and have suggested its use on caries prevention. However there are still no reports on the intrapulpal temperature increase during enamel irradiation using parameters for caries prevention. The aim of this in vitro study was to evaluate the temperature variation in the pulp chamber during human enamel irradiation with Er,Cr:YSGG laser at different energy densities. Fifteen enamel blocks obtained from third molars (3 x 3 x 3 mm) were randomly assigned to 3 groups (n=5): G1 - Er,Cr:YSGG laser 0.25 W, 20 Hz, 2.84 J/cm², G2 - Er,Cr:YSGG laser 0.50 W, 20 Hz, 5.68 J/cm², G3 - Er,Cr:YSGG laser 0.75 W, 20 Hz, 8.52 J/cm². During enamel irradiation, two thermocouples were fixed in the inner surface of the specimens and a thermal conducting paste was used. One-way ANOVA did not show statistically significant difference among the experimental groups (a=0.05). There was intrapulpal temperature variation <0.1ºC for all irradiation parameters. In conclusion, under the tested conditions, the use of Er,Cr:YSGG laser with parameters set for caries prevention lead to an acceptable temperature increase in the pulp chamber.
Resumo:
This in vitro study evaluated the temperature of dentures after different microwave irradiation protocols. Two complete dentures (one maxillary and one mandibular denture) were irradiated separately 4 times for each of the following 5 protocols: dentures immersed in water (G1- 6 min, G2- 3 min); dentures kept dry (G3- 6 min); dentures placed in the steam sterilizer (G4- 6 min, G5- 3 min). The final temperature of the dentures was gauged in a thin and in a thick area of each denture with an infrared thermometer. All groups presented an increase in the resin base temperature. The thin areas of the dentures underwent greater heating than the thick areas. There was no significant difference (p>0.05) between the final mean temperatures of dentures immersed in water for 6 (G1) and 3 min (G2). However, the final mean temperatures recorded in G1 and G2 exceeded 71°C and were significantly higher (<0.001) than the final mean temperatures recorded in the other groups. It may be concluded that denture base resins subjected to microwave irradiation immersed in water may be exposed to deleterious temperatures.
Resumo:
In order to evaluate the effect of environmental temperature on ruminal fermentation and on mineral levels of growing ruminants, it was used 12 male calves (initial average weight 82.9 ± 7.7 kg, 100 days of age), were employed in a randomized block design (by weight) experiment, with repeated weight measurement and two environmental temperatures: thermoneutral (24ºC) and heat-stressed (33ºC), during 38 days. The animals exposed to 33ºC presented lower dry matter ingestion, lower T3 (triiodothyronine) serum level, higher ammoniacal nitrogen (NH3-N) level in the rumen liquid, and higher rectal and body temperatures during all the experimental period when compared to the animals kept in thermoneutral environment (24ºC). The animals kept under heat stress environment (33ºC) presented higher calcium serum level, which was the highest on 31st day and the lowest on the 38th day of the experiment; phosphorus level was the lowest during all the experimental period; sodium level was lower on the 17th, 31st and 38th experimental days. Potassium and zinc levels were lower after 24 days; copper level was lower until the 24th day; magnesium level was higher until the 17th day, if compared to the ones from the animals kept in thermoneutral environment (24ºC). The heat-stressed animals presented higher levels of ammoniacal nitrogen in the ruminal liquid and a decrease in the phosphorus, sodium, potassium and zinc serum levels. These results show the necessity of changes on feed management to ruminants in temperatures over the thermal comfort limits so that performance loss is decreased.
Resumo:
The objective of the present study was to evaluate the effects of light and temperature on germination of Cereus pernambucensis seeds, a species of columnar cactus native to Brazil and naturally incident in the restinga. Cereus pernambucensis seeds were incubated under different temperatures, from 5 to 45 °C, with 5 °C intervals, and under alternating temperatures of 15-20 °C, 15-30 °C, 20-25 °C, 20-30 °C, 20-35 °C, 25-30 °C, 25-35 °C, and 30-35 °C, both under continuous white light and dark. The seeds were also incubated in a gradient of phytochrome photoequilibrium at 25 °C. The highest percentage germination in this species was between 25 and 30 °C. The minimum temperature was between 15 and 20 °C and the maximum between 35 and 40 °C. Alternating temperatures did not affect the percentage of seed germination, but it did alter the rate and synchronization indexes. Seeds incubated in the dark did not germinate under any of the conditions tested, indicating that this species when cultivated present light sensitive seeds controlled by phytochrome. The seeds can tolerate a lot of shade conditions, germinating under very low fluence response of phytochrome.
Resumo:
The tolerance to the combined effects of temperature and salinity was investigated in the interstitial isopod Coxicerberus ramosae (Albuquerque, 1978), a species of intertidal zone of sandy beaches in Rio de Janeiro, Brazil. The animals were collected on Praia Vermelha Beach. The experiments lasted 24 h and nine salinities and seven temperatures were used for a total of 63 combinations. Thirty animals were tested in each combination. The species showed high survival in most of the combinations. The temperature of 35 ºC was lethal and at 5 ºC, the animals tolerated only a narrow range of salinities. The statistical analyses showed that the effects of temperature and salinity were significant on the survival, which confirmed the euryhalinity and eurythermy of this species.
Resumo:
In this work we report on a comparison of some theoretical models usually used to fit the dependence on temperature of the fundamental energy gap of semiconductor materials. We used in our investigations the theoretical models of Viña, Pässler-p and Pässler-ρ to fit several sets of experimental data, available in the literature for the energy gap of GaAs in the temperature range from 12 to 974 K. Performing several fittings for different values of the upper limit of the analyzed temperature range (Tmax), we were able to follow in a systematic way the evolution of the fitting parameters up to the limit of high temperatures and make a comparison between the zero-point values obtained from the different models by extrapolating the linear dependence of the gaps at high T to T = 0 K and that determined by the dependence of the gap on isotope mass. Using experimental data measured by absorption spectroscopy, we observed the non-linear behavior of Eg(T) of GaAs for T > ΘD.
Resumo:
We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.