940 resultados para Teaching engineering


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been considerable debate about the need for more empirical, evidence based studies of the impact of various interventions and practices in engineering education. A number of resources including workshops to guide engineering faculty in the conduct of such studies have emerged over recent years. This paper presents a critique of the evolution of engineering education research and its underlying assumptions in the context of the systemic reform currently underway in engineering education. This critique leads to an analysis of the ways in which our current understanding of engineering, engineering education and research in engineering education is shaped by the traditions and cultural characteristics of the profession and grounded, albeit implicitly, in a particular suite of epistemological assumptions. It is argued that the whole enterprise of engineering education needs to be radically reconceptualized. A pluralistic approach to framing scholarship in engineering education is then proposed based on the principles of demonstrable practicality, critical interdisciplinarity and holistic reflexivity. This new framework has implications for engaging and developing faculty in the context of new teaching and learning paradigms, for the evaluation of the scholarship of teaching and for the research-teaching nexus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper begins with the argument that within modern-day society, engineering has shifted from being the scientific and technical mainstay of industrial, and more recently digital change to become the most vital driver of future advancement. In order to meet the inevitable challenges resulting from this role, the nature of engineering education is constantly evolving and as such engineering education has to change. The paper argues that what is needed is a fresh approach to engineering education – one that is sufficiently flexible so as to capture the fast-changing needs of engineering education as a discipline, whilst being pedagogically suitable for use with a range of engineering epistemologies. It provides an overview of a case study in which a new approach to engineering education has been developed and evaluated. The approach, which is based on the concept of scholarship, is described in detail. This is followed by a discussion of how the approach has been put into practice and evaluated. The paper concludes by arguing that within today's market-driven university world, the need for effective learning and teaching practice, based in good scholarship, is fundamental to student success.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starting with the question “How can University level Engineering Education be developed in such a way so as to enhance the quality of the student learning experience?”, this discussion paper proposes an approach to engineering education developed by a senior engineering educator working alongside a pedagogical researcher in an attempt to engage colleagues in contemporary debates about the issues currently faced across the Sector. Such issues include difficulties with recruiting students onto programmes as well as high levels of student attrition and failure. Underpinned by three distinctive concepts: Synergy, Variety & Relationships (S+V+R), the approach brings together pedagogic and engineering epistemologies in an empirically grounded framework in such a way so as to provide an accessible and relevant learning approach that, if followed, engenders student success [S2]. Specifically developed with the intention of increasing retention and positively impacting student success [S2], the S+V+R=S2 approach provides a scholarly and Synergetic (S) approach to engineering education that is both innovative and exciting. Building on the argument that Variety (V) in education is pivotal to promoting originality and creativity in learning and teaching, this paper shows how, by purposefully developing a range of learning and teaching approaches, student engagement and thus success can be increased. It also considers the importance of Relationships (R) in higher education, arguing that belonging and relationships are crucial factors impacting student experiences. When taken together (Synergy, Variety and Relationships) and applied within an Engineering Education context, students are provided with a unique learning environment – one that both promotes individual success and improves organisational effectiveness. The uniqueness of the approach is in the synthesis of these three concepts within an Engineering Education epistemology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over recent years, the role of engineering in promoting a sustainable society has received much public attention [1] with particular emphasis given to the need to promote the future prosperity and security of society through the recruitment and education of more engineers [2,3]. From an employment perspective, the Leitch Review [4] suggested that ‘generic’ transferable employability skills development should constitute a more substantial part of university education. This paper argues that the global drivers impacting engineering education [5] correlate strongly to those underpinning the Leitch review, therefore the question of how to promote transferable employability skills within the wider engineering curriculum is increasingly relevant. By exploring the use of heritage in the engineering curriculum as a way to promote learning and engage students, a less familiar approach to study is discussed. This approach moves away from stereotypical notions of the use of information technology as representing the pinnacle of innovation in education. Taking the student experience as its starting point, the paper draws upon the findings of an exploratory study critically analysing the pedagogical value of using heritage in engineering education. It discusses a teaching approach in which engineering students are taken out of their ‘comfort zone’ - away from the classroom, laboratory and computer, to a heritage site some 100 miles away from the university. The primary learning objective underpinning this approach is to develop students’ transferable skills by encouraging them to consider how to apply theoretical concepts to a previously unexplored situation. By reflecting upon students’ perceptions of the value of this approach, and by identifying how heritage may be utilised as an innovative learning and teaching approach in engineering education, this paper makes a notable contribution to current pedagogical debates in the discipline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analysis of a bespoke learning and teaching approach developed for use in engineering education

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineers logbooks are an important part of the CDIO process, as a prequel to the logooks they will be expected to keep when in industry. Previously however, students logbooks were insufficient and students did not appear to appreciate the importance of the logbooks or how they would be assessed. In an attempt to improve the students understanding and quality of logbooks, a group of ~100 1st year CDIO students were asked to collaboratively develop a marking matrix with the tutors. The anticipated outcome was that students would have more ownership in, and a deeper understanding of, the logbook and what is expected from the student during assessment. A revised marking matrix was developed in class and a short questionnaire was implemented on delivery of the adapted matrix to gauge the students response to the process. Marks from the logbooks were collected twice during teaching period one and two and compared to marks from previous years. This poster will deliver the methodology and outcomes for this venture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aston University has been working closely with key companies from within the electricity industry for several years, initially in the development and delivery of an employer-led foundation degree programme in electrical power engineering, and more recently, in the development of a progression pathway for foundation degree graduates to achieve a Bachelors-level qualification. The Electrical Power Engineering foundation degree was developed in close consultation with the industry such that the programme is essentially owned by the sector. Programme delivery has required significant shifts away from traditional HE teaching patterns whilst maintaining the quality requirement and without compromise of the academic degree standard. Block teaching (2-week slots), partnership delivery, off-site student support and work-based learning have all presented challenges as we have sought to maximise the student learning experience and to ensure that the graduates are fit-for purpose and "hit the ground running" within a defined career structure for sponsoring companies. This paper will outline the skills challenges facing the sector; describe programme developments and delivery challenges; before articulating some observations and conclusions around programme effectiveness, impact of foundation degree graduates in the workplace and the significance of the close working relationship with key sponsoring companies. Copyright © 2012, September.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the demand for engineering graduates at what may be defined as an unprecedented high, many universities find themselves facing significant levels of student attrition-with high "drop-out levels" being a major issue in engineering education. In order to address this, Aston University in the UK has radically changed its undergraduate engineering education curriculum, introducing capstone CDIO (Conceive, Design, Implement, Operate) modules for all first year students studying Mechanical Engineering and Design. The introduction of CDIO is aimed at making project / problem based learning the norm. Utilising this approach, the learning and teaching in engineering purposefully aims to promote innovative thinking, thus equipping students with high-level problem-solving skills in a way that builds on theory whilst enhancing practical competencies and abilities. This chapter provides an overview of an Action Research study undertaken contemporaneously with the development, introduction, and administration of the first two semesters of CDIO. It identifies the challenges and benefits of the approach and concludes by arguing that whilst CDIO is hard work for staff, it can make a real difference to students' learning experiences, thereby positively impacting retention. © 2012, IGI Global.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper builds on previous work (Clark, 2009; Clark & Andrews 2011, 2014) to continue the debate around a seemingly universal question…“How can educational theory be applied to engineering education in such a way so as to make the subject more accessible and attractive to students? It argues that there are three key elements to student success; Relationships, Variety & Synergy (RVS). By further examining the purposefully developed bespoke learning and teaching approach constructed around these three elements (RVS) the discourse in this paper links educational theory to engineering education and in doing so further develops arguments for the introduction of a purposefully designed pedagogic approach for use in engineering education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper builds on previous work (Clark, 2009; Clark & Andrews 2011, 2014) to continue the debate around a seemingly universal question…“How can educational theory be applied to engineering education in such a way so as to make the subject more accessible and attractive to students? It argues that there are three key elements to student success; Relationships, Variety & Synergy (RVS). By further examining the purposefully developed bespoke learning and teaching approach constructed around these three elements (RVS) the discourse in this paper links educational theory to engineering education and in doing so further develops arguments for the introduction of a purposefully designed pedagogic approach for use in engineering education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the paper, methodological aspects of nowadays high engineering education are considered. Thoughts generalizing author’s long-term experience are set forth. Recommendations on the improvement of pedagogical process and training system for young teachers are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents experience in teaching of knowledge and ontological engineering. The teaching framework is targeted on the development of cognitive skills that will allow facilitating the process of knowledge elicitation, structuring and ontology development for scaffolding students’ research. The structuring procedure is the kernel of ontological engineering. The 5-steps ontology designing process is described. Special stress is put on “beautification” principles of ontology creating. The academic curriculum includes interactive game-format training of lateral thinking, interpersonal cognitive intellect and visual mind mapping techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reports on an investigationwith first year undergraduate ProductDesign and Management students within a School of Engineering and Applied Science. The students at the time of this investigation had studied fundamental engineering science and mathematics for one semester. The students were given an open ended, ill-formed problem which involved designing a simple bridge to cross a river.They were given a talk on problemsolving and given a rubric to follow, if they chose to do so.They were not given any formulae or procedures needed in order to resolve the problem. In theory, they possessed the knowledge to ask the right questions in order tomake assumptions but, in practice, it turned out they were unable to link their a priori knowledge to resolve this problem. They were able to solve simple beam problems when given closed questions. The results show they were unable to visualize a simple bridge as an augmented beam problem and ask pertinent questions and hence formulate appropriate assumptions in order to offer resolutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* The work is partially suported by Russian Foundation for Basic Studies (grant 02-01-00466).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commercial process simulators are increasing interest in the chemical engineer education. In this paper, the use of commercial dynamic simulation software, D-SPICE® and K-Spice®, for three different chemical engineering courses is described and discussed. The courses cover the following topics: basic chemical engineering, operability and safety analysis and process control. User experiences from both teachers and students are presented. The benefits of dynamic simulation as an additional teaching tool are discussed and summarized. The experiences confirm that commercial dynamic simulators provide realistic training and can be successfully integrated into undergraduate and graduate teaching, laboratory courses and research. © 2012 The Institution of Chemical Engineers.