972 resultados para THYROID AUTOREGULATION
Resumo:
Peripheral neurons can regenerate after axotomy; in this process, the role of cytoskeletal proteins is important because they contribute to formation and reorganization, growth, transport, stability and plasticity of axons. In the present study, we examined the effects of thyroid hormones (T3) on the expression of major cytoskeletal proteins during sciatic nerve regeneration. At various times after sciatic nerve transection and T3 local administration, segments of operated nerves from T3-treated rats and control rats were examined by Western blotting for the presence of neurofilament, tubulin and vimentin. Our results revealed that, during the first week after surgery, T3 treatment did not significantly alter the level of NF subunits and tubulin in the different segments of operated nerves compared to control nerves. Two or 4 weeks after operation, the concentration of NF-H and NF-M isoforms was clearly increased by T3 treatment. Moreover, under T3-treatment, NF proteins appeared more rapidly in the distal segment of operated nerves. Likewise, the levels of betaIII, and of acetylated and tyrosinated tubulin isotypes, were also up-regulated by T3-treatment during regeneration. However, only the tyrosinated tubulin form appeared earlier in the distal nerve segments. At this stage of regeneration, T3 had no effect on the level of vimentin expression. In conclusion, thyroid hormone improves and accelerates peripheral nerve regeneration and exerts a positive effect on cytoskeletal protein expression and transport involved in axonal regeneration. These results help us to understand partially the mechanism by which thyroid hormones enhance peripheral nerve regeneration. The stimulating effect of T3 on peripheral nerve regeneration may have considerable therapeutic potential.
Resumo:
Thyroid hormones are involved in the regulation of growth and metabolism in all vertebrates. Transthyretin is one of the extracellular proteins with high affinity for thyroid hormones which determine the partitioning of these hormones between extracellular compartments and intracellular lipids. During vertebrate evolution, both the tissue pattern of expression and the structure of the gene for transthyretin underwent characteristic changes. The purpose of this study was to characterize the position of Insectivora in the evolution of transthyretin in eutherians, a subclass of Mammalia. Transthyretin was identified by thyroxine binding and Western analysis in the blood of adult shrews, hedgehogs, and moles. Transthyretin is synthesized in the liver and secreted into the bloodstream, similar to the situation for other adult eutherians, birds, and diprotodont marsupials, but different from that for adult fish, amphibians, reptiles, monotremes, and Australian polyprotodont marsupials. For the characterization of the structure of the gene and the processing of mRNA for transthyretin, cDNA libraries were prepared from RNA from hedgehog and shrew livers, and full-length cDNA clones were isolated and sequenced. Sections of genomic DNA in the regions coding for the splice sites between exons 1 and 2 were synthesized by polymerase chain reaction and sequenced. The location of splicing was deduced from comparison of genomic with cDNA nucleotide sequences. Changes in the nucleotide sequence of the transthyretin gene during evolution are most pronounced in the region coding for the N-terminal region of the protein. Both the derived overall amino sequences and the N-terminal regions of the transthyretins in Insectivora were found to be very similar to those in other eutherians but differed from those found in marsupials, birds, reptiles, amphibians, and fish. Also, the pattern of transthyretin precursor mRNA splicing in Insectivora was more similar to that in other eutherians than to that in marsupials, reptiles, and birds. Thus, in contrast to the marsupials, with a different pattern of transthyretin gene expression in the evolutionarily "older" polyprotodonts compared with the evolutionarily "younger" diprotodonts, no separate lineages of transthyretin evolution could be identified in eutherians. We conclude that transthyretin gene expression in the liver of adult eutherians probably appeared before the branching of the lineages leading to modern eutherian species.
Resumo:
Context: Subclinical thyroid dysfunction is common in older people. However, its clinical importance is uncertain. Objective: Our objective was to determine the extent to which subclinical hyperthyroidism and hypothyroidism influence the risk of heart failure and cardiovascular diseases in older people. Setting and Design: The Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) is an prospective cohort study. Patients: Patients included men and women aged 70-82 yr (n = 5316) with known cardiovascular risk factors or previous cardiovascular disease. Main Outcome Measures: Incidence rate of heart failure hospitalization, atrial fibrillation, and cardiovascular events and mortality according to baseline thyroid status were evaluated. Euthyroid participants (TSH =0.45-4.5 mIU/liter) were compared with those with subclinical hyperthyroidism (TSH <0.45 mIU/liter) and those with subclinical hypothyroidism (TSH ≥4.5 mIU/liter, both with normal free T(4)). Results: Subclinical hyperthyroidism was present in 71 participants and subclinical hypothyroidism in 199 participants. Over 3.2 yr follow-up, the rate of heart failure was higher for subclinical hyperthyroidism compared with euthyroidism [age- and sex-adjusted hazard ratio (HR) = 2.93, 95% confidence interval (CI) = 1.37-6.24, P = 0.005; multivariate-adjusted HR = 3.27, 95% CI = 1.52-7.02, P = 0.002). Subclinical hypothyroidism (only at threshold >10 mIU/liter) was associated with heart failure (age- and sex-adjusted HR = 3.01, 95% CI = 1.12-8.11, P = 0.029; multivariate HR = 2.28, 95% CI = 0.84-6.23). There were no strong evidence of an association between subclinical thyroid dysfunction and cardiovascular events or mortality, except in those with TSH below 0.1 or over 10 mIU/liter and not taking pravastatin. Conclusion: Older people at high cardiovascular risk with low or very high TSH along with normal free T(4) appear at increased risk of incident heart failure.
Resumo:
Thyroid substitution is generally considered easy as well by general practitioners as by specialists, considering that a single hormone levothyroxin is recommended and that laboratory tests are readily available for measurement of free T4 and TSH. However cross sectional studies have shown that about 45% of patients are over-treated and under-treated. This paper summarizes the critical information useful to facilitate a better management of hypothyroid patients by promoting long lasting euthyroidism.
Resumo:
BACKGROUND: Data on the association between subclinical thyroid dysfunction and fractures conflict. PURPOSE: To assess the risk for hip and nonspine fractures associated with subclinical thyroid dysfunction among prospective cohorts. DATA SOURCES: Search of MEDLINE and EMBASE (1946 to 16 March 2014) and reference lists of retrieved articles without language restriction. STUDY SELECTION: Two physicians screened and identified prospective cohorts that measured thyroid function and followed participants to assess fracture outcomes. DATA EXTRACTION: One reviewer extracted data using a standardized protocol, and another verified data. Both reviewers independently assessed methodological quality of the studies. DATA SYNTHESIS: The 7 population-based cohorts of heterogeneous quality included 50,245 participants with 1966 hip and 3281 nonspine fractures. In random-effects models that included the 5 higher-quality studies, the pooled adjusted hazard ratios (HRs) of participants with subclinical hyperthyroidism versus euthyrodism were 1.38 (95% CI, 0.92 to 2.07) for hip fractures and 1.20 (CI, 0.83 to 1.72) for nonspine fractures without statistical heterogeneity (P = 0.82 and 0.52, respectively; I2= 0%). Pooled estimates for the 7 cohorts were 1.26 (CI, 0.96 to 1.65) for hip fractures and 1.16 (CI, 0.95 to 1.42) for nonspine fractures. When thyroxine recipients were excluded, the HRs for participants with subclinical hyperthyroidism were 2.16 (CI, 0.87 to 5.37) for hip fractures and 1.43 (CI, 0.73 to 2.78) for nonspine fractures. For participants with subclinical hypothyroidism, HRs from higher-quality studies were 1.12 (CI, 0.83 to 1.51) for hip fractures and 1.04 (CI, 0.76 to 1.42) for nonspine fractures (P for heterogeneity = 0.69 and 0.88, respectively; I2 = 0%). LIMITATIONS: Selective reporting cannot be excluded. Adjustment for potential common confounders varied and was not adequately done across all studies. CONCLUSION: Subclinical hyperthyroidism might be associated with an increased risk for hip and nonspine fractures, but additional large, high-quality studies are needed. PRIMARY FUNDING SOURCE: Swiss National Science Foundation.
Resumo:
Background: Guidelines of the Diagnosis and Management of Heart Failure (HF) recommend investigating exacerbating conditions, such as thyroid dysfunction, but without specifying impact of different TSH levels. Limited prospective data exist regarding the association between subclinical thyroid dysfunction and HF events. Methods: We performed a pooled analysis of individual participant data using all available prospective cohorts with thyroid function tests and subsequent follow-up of HF events. Individual data on 25,390 participants with 216,247 person-years of follow-up were supplied from 6 prospective cohorts in the United States and Europe. Euthyroidism was defined as TSH 0.45-4.49 mIU/L, subclinical hypothyroidism as TSH 4.5-19.9 mIU/L and subclinical hyperthyroidism as TSH <0.45 mIU/L, both with normal free thyroxine levels. HF events were defined as acute HF events, hospitalization or death related to HF events. Results: Among 25,390 participants, 2068 had subclinical hypothyroidism (8.1%) and 648 subclinical hyperthyroidism (2.6%). In age- and gender-adjusted analyses, risks of HF events were increased with both higher and lower TSH levels (P for quadratic pattern<0.01): hazard ratio (HR) was 1.01 (95% confidence interval [CI] 0.81-1.26) for TSH 4.5-6.9 mIU/L, 1.65 (CI 0.84-3.23) for TSH 7.0-9.9 mIU/L, 1.86 (CI 1.27-2.72) for TSH 10.0-19.9 mIUL/L (P for trend <0.01), and was 1.31 (CI 0.88-1.95) for TSH 0.10-0.44 mIU/L and 1.94 (CI 1.01-3.72) for TSH <0.10 mIU/L (P for trend=0.047). Risks remained similar after adjustment for cardiovascular risk factors. Conclusion: Risks of HF events were increased with both higher and lower TSH levels, particularly for TSH ≥10 mIU/L and for TSH <0.10 mIU/L. Our findings might help to interpret TSH levels in the prevention and investigation of HF.
Resumo:
The pattern of thyroid function changes following severe trauma was assessed prospectively in 35 patients during the first 5 days after injury. Patients were divided into 2 groups to evaluate the effect of head injury: group I, patients with severe head injury; group II, patients with multiple injuries without head injury. The results demonstrate a low T3 and low T4 syndrome throughout the study, with decreases in both total and free levels of T3 and T4, normal or increased rT3 levels, and normal TSH levels. The presence of severe head injury was associated with lower levels of TSH and free T3. Mortality was 37%. Survival was associated with higher TSH and T3 levels, but not with higher T4 levels. TSH levels exceeding 1 mU/l on the first day were only observed in survivors. These findings show that a typical low T3 and low T4 syndrome is present after severe trauma in patients with multiple injury as well as with head injury. Primary hypothyroidism can be excluded, pituitary or hypothalamic hypothyroidism is likely in these patients.
Meta-analysis: subclinical thyroid dysfunction and the risk for coronary heart disease and mortality
Resumo:
BACKGROUND: Data on the association between subclinical thyroid dysfunction and coronary heart disease (CHD) and mortality are conflicting. PURPOSE: To summarize prospective evidence about the relationship between subclinical thyroid dysfunction and CHD and mortality. DATA SOURCES: MEDLINE (1950 to January 2008) without language restrictions and reference lists of retrieved articles were searched. STUDY SELECTION: Two reviewers screened and selected cohort studies that measured thyroid function and then followed persons prospectively to assess CHD or mortality. DATA EXTRACTION: By using a standardized protocol and forms, 2 reviewers independently abstracted and assessed studies. DATA SYNTHESIS: Ten of 12 identified studies involved population-based cohorts that included 14 449 participants. All 10 population-based cohort studies examined risks associated with subclinical hypothyroidism (2134 CHD events and 2822 deaths), whereas only 5 examined risks associated with subclinical hyperthyroidism (1392 CHD events and 1993 deaths). In a random-effects model, the relative risk (RR) for subclinical hypothyroidism for CHD was 1.20 (95% CI, 0.97 to 1.49; P for heterogeneity = 0.14; I(2 )= 33.4%). Risk estimates were lower when higher-quality studies were pooled (RR, 1.02 to 1.08) and were higher among participants younger than 65 years (RR, 1.51 [CI, 1.09 to 2.09] for studies with mean participant age <65 years and 1.05 [CI, 0.90 to 1.22] for studies with mean participant age > or =65 years). The RR was 1.18 (CI, 0.98 to 1.42) for cardiovascular mortality and 1.12 (CI, 0.99 to 1.26) for total mortality. For subclinical hyperthyroidism, the RR was 1.21 (CI, 0.88 to 1.68) for CHD, 1.19 (CI, 0.81 to 1.76) for cardiovascular mortality, and 1.12 (CI, 0.89 to 1.42) for total mortality (P for heterogeneity >0.50; I(2 )= 0% for all studies). LIMITATIONS: Individual studies adjusted for different potential confounders, and 1 study provided only unadjusted data. Publication bias or selective reporting of outcomes could not be excluded. CONCLUSION: Subclinical hypothyroidism and hyperthyroidism may be associated with a modest increased risk for CHD and mortality, with lower risk estimates when pooling higher-quality studies and larger CIs for subclinical hyperthyroidism
Resumo:
Rapport de synthèse : Description : ce travail de thèse évalue de façon systématique les études sur l'association entre les dysfonctions thyroïdiennes infracliniques d'une part, et la maladie coronarienne et la mortalité d'autre part. Les hypothyroïdies infracliniques affectent environ 4-5% de la population adulte alors que la prévalence de l'hyperthyroïdie infraclinique est inférieure (environ 1%). L'éventuelle association entre elles pourrait justifier un dépistage systématique des dysfonctions thyroïdiennes infracliniques. Les précédentes études sur l'association entre l'hypothyroïdie infraclinique et la maladie coronarienne ont donné des résultats conflictuels. La parution de nouveaux articles récents basés sur de grandes cohortes prospectives nous a permis d'effectuer une méta-analyse basée uniquement sur des études de cohorte prospectives, augmentant ainsi la validité des résultats. Résultats: 10 des 12 études identifiées pour notre revue systématique sont basées sur des cohortes issues de la population générale («population-based »), regroupant en tout 14 449 participants. Ces 10 études examinent toutes le risque associé à l'hypothyroïdie infraclinique (avec 2134 événements coronariens et 2822 décès), alors que 5 étudient également le risque associé à l'hyperthyroïdie infraclinique (avec 1392 événements coronariens et 1993 décès). En utilisant un modèle statistique de type random-effect model, le risque relatif [RR] lié à l'hypothyroïdie infraclinique pour la maladie coronarienne est de 1.20 (intervalle de confiance [IC] de 95%, 0.97 à 1.49). Le risque diminue lorsque l'on regroupe uniquement les études de meilleure qualité (RR compris entre 1.02 et 1.08). Il est plus élevé parmi les participants de moins de 65 ans (RR, 1.51 [IC, 1.09 à 2.09] et 1.05 [IC, 0.90 à 1.22] pour les études dont l'âge moyen des participants est >_ 65 ans). Le RR de la mortalité cardiovasculaire est de 1.18 (IC, 0.98 à 1.42) et de 1.12 (IC, 0.99 à 1.26) pour la mortalité totale. En cas d'hyperthyroïdie infraclinique, les RR de la maladie coronarienne sont de 1.21 (IC, 0.88 à 1.68), de 1.19 (IC, 0.81 à 1.76) pour la mortalité cardiovasculaire, et de 1.12 (IC, 0.89 à 1.42) pour la mortalité totale. Conclusions et perspectives : nos résultats montrent que les dysfonctions thyroïdiennes infracliniques (hypothyroïdie et hyperthyroïdie infracliniques) représentent un facteur de risque modifiable, bien que modéré, de la maladie coronarienne et de la mortalité. L'efficacité du traitement de ces dysfonctions thyroïdiennes infracliniques doit encore être prouvée du point de vue cardiovasculaire et de la mortalité. Il est nécessaire d'effectuer des études contrôlées contre placebo avec le risque cardiovasculaire et la mortalité comme critères d'efficacité, avant de pouvoir proposer des recommandations sur le dépistage des ces dysfonctions thyroïdiennes dans la population adulte.
Resumo:
The development of nuclear hormone receptor antagonists that directly inhibit the association of the receptor with its essential coactivators would allow useful manipulation of nuclear hormone receptor signaling. We previously identified 3-(dibutylamino)-1-(4-hexylphenyl)-propan-1-one (DHPPA), an aromatic β-amino ketone that inhibits coactivator recruitment to thyroid hormone receptor β (TRβ), in a high-throughput screen. Initial evidence suggested that the aromatic β-enone 1-(4-hexylphenyl)-prop-2-en-1-one (HPPE), which alkylates a specific cysteine residue on the TRβ surface, is liberated from DHPPA. Nevertheless, aspects of the mechanism and specificity of action of DHPPA remained unclear. Here, we report an x-ray structure of TRβ with the inhibitor HPPE at 2.3-Å resolution. Unreacted HPPE is located at the interface that normally mediates binding between TRβ and its coactivator. Several lines of evidence, including experiments with TRβ mutants and mass spectroscopic analysis, showed that HPPE specifically alkylates cysteine residue 298 of TRβ, which is located near the activation function-2 pocket. We propose that this covalent adduct formation proceeds through a two-step mechanism: 1) β-elimination to form HPPE; and 2) a covalent bond slowly forms between HPPE and TRβ. DHPPA represents a novel class of potent TRβ antagonist, and its crystal structure suggests new ways to design antagonists that target the assembly of nuclear hormone receptor gene-regulatory complexes and block transcription.
Resumo:
While there is evidence that the two ubiquitously expressed thyroid hormone (T3) receptors, TRalpha1 and TRbeta1, have distinct functional specificities, the mechanism by which they discriminate potential target genes remains largely unexplained. In this study, we demonstrate that the thyroid hormone response elements (TRE) from the malic enzyme and myelin basic protein genes (METRE and MBPTRE) respectively, are not functionally equivalent. The METRE, which is a direct repeat motif with a 4-base pair gap between the two half-site hexamers binds thyroid hormone receptor as a heterodimer with 9-cis-retinoic acid receptor (RXR) and mediates a high T3-dependent activation in response to TRalpha1 or TRbeta1 in NIH3T3 cells. In contrast, the MBPTRE, which consists of an inverted palindrome formed by two hexamers spaced by 6 base pairs, confers an efficient transactivation by TRbeta1 but a poor transactivation by TRalpha1. While both receptors form heterodimers with RXR on MBPTRE, the poor transactivation by TRalpha1 correlates also with its ability to bind efficiently as a monomer. This monomer, which is only observed with TRalpha1 bound to MBPTRE, interacts neither with N-CoR nor with SRC-1, explaining its functional inefficacy. However, in Xenopus oocytes, in which RXR proteins are not detectable, the transactivation mediated by TRalpha1 and TRbeta1 is equivalent and independent of a RXR supply, raising the question of the identity of the thyroid hormone receptor partner in these cells. Thus, in mammalian cells, the binding characteristics of TRalpha1 to MBPTRE (i.e. high monomer binding efficiency and low transactivation activity) might explain the particular pattern of T3 responsiveness of MBP gene expression during central nervous system development.
Resumo:
CONTEXT: Subclinical hypothyroidism has been associated with increased risk of coronary heart disease (CHD), particularly with thyrotropin levels of 10.0 mIU/L or greater. The measurement of thyroid antibodies helps predict the progression to overt hypothyroidism, but it is unclear whether thyroid autoimmunity independently affects CHD risk. OBJECTIVE: The objective of the study was to compare the CHD risk of subclinical hypothyroidism with and without thyroid peroxidase antibodies (TPOAbs). DATA SOURCES AND STUDY SELECTION: A MEDLINE and EMBASE search from 1950 to 2011 was conducted for prospective cohorts, reporting baseline thyroid function, antibodies, and CHD outcomes. DATA EXTRACTION: Individual data of 38 274 participants from six cohorts for CHD mortality followed up for 460 333 person-years and 33 394 participants from four cohorts for CHD events. DATA SYNTHESIS: Among 38 274 adults (median age 55 y, 63% women), 1691 (4.4%) had subclinical hypothyroidism, of whom 775 (45.8%) had positive TPOAbs. During follow-up, 1436 participants died of CHD and 3285 had CHD events. Compared with euthyroid individuals, age- and gender-adjusted risks of CHD mortality in subclinical hypothyroidism were similar among individuals with and without TPOAbs [hazard ratio (HR) 1.15, 95% confidence interval (CI) 0.87-1.53 vs HR 1.26, CI 1.01-1.58, P for interaction = .62], as were risks of CHD events (HR 1.16, CI 0.87-1.56 vs HR 1.26, CI 1.02-1.56, P for interaction = .65). Risks of CHD mortality and events increased with higher thyrotropin, but within each stratum, risks did not differ by TPOAb status. CONCLUSIONS: CHD risk associated with subclinical hypothyroidism did not differ by TPOAb status, suggesting that biomarkers of thyroid autoimmunity do not add independent prognostic information for CHD outcomes.