864 resultados para T04 Indian Purchase
Resumo:
Purpose: A number of proteome studies have been performed recently to identify pheromone-related protein expression and their molecular function using genetically modified rodents' urine. However, no such studies have used Indian commensal rodents; interestingly, in a previous investigation, we confirmed the presence of volatile molecules in commensal rodents urine and these molecules seem to be actively involved in pheromonal communication. Therefore, the present study aims to identify the major urinary protein [MUP] present in commensal rat urine, which will help us to understand the protein's expression pattern and intrinsic properties among the rodents globally. Experimental Design: Initially, the total urinary proteins were separated by 1-D and 2-D electrophoresis and then subsequently analyzed by Matrix Assisted Laser Desorption Ionization-Time of Flight and Mass Spectrometer (MALDI-TOF/MS). Furthermore, they were then fragmented with the aid of a Tandem Mass Spectrometer (TOF/TOF) and the identified sequences aligned and confirmed using similarity with the deduced primary structures of members of the lipocalin superfamily.Results: The SDS-PAGE protein profiles showed distinct proteins with molecular masses of 15, 22.4, 25, 28, 42, 50, 55, 68, and 91 kDa. Of these proteins, the 22.4 kDa protein was considered to be target candidate. When 2D electrophoresis was carried out, about similar to 50 spots were detected with different masses and various pI ranges. The 22.4 kDa protein was found to have a pI of about 4.9. This 22.4 kDa protein spot was digested and subjected to mass spectrometry; it was identified as rat MUP. The fragmented peptides from the rat MUP at 935, 1026, 1192, and 1303 m/z were further fragmented with the aid of MS/MS and generated de novo sequence and this confirmed this protein to be the MUP present in the urine of commensal rats.Conclusion: The present investigation confirms the presence of MUP with a molecular mass of 22.4 kDa in the urine of commensal rats. This protein may be involved in the binding of volatile molecules and opens up a discussion about how volatile and non-volatile molecules in the commensal rats' urine may contribute chemo-communication.
Resumo:
The 3A region of foot-and-mouth disease virus has been implicated in host range and virulence. For example, amino acid deletions in the porcinophilic strain (O/TAW/97) at 93-102 aa of the 153 codons long 3A protein have been recognized as the determinant of species specificity. In the present study, 18 type 0 FMDV isolates from India were adapted in different cell culture systems and the 3A sequence was analyzed. These isolates had complete 3A coding sequence (153 aa) and did not exhibit growth restriction in cells based on species of origin. The 3A region was found to be highly conserved at N-terminal half (1-75 aa) but exhibited variability or substitutions towards C-terminal region (80-153). Moreover the amino acid substitutions were more frequent in recent Indian buffalo isolates but none of the Indian isolates showed deletion in 3A protein, which may be the reason for the absence of host specificity in vitro. Further inclusive analysis of 3A region will reveal interesting facts about the variability of FMD virus 3A region in an endemic environment. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Overexpression of the epidermal growth factor receptor family genes, which include ErbB-1, 2, 3 and 4, has been implicated in a number of cancers. We have studied the extent of ErbB-2 overexpression among Indian women with sporadic breast cancer. Methods: Immmunohistochemistry and genomic polymerase chain reaction (PCR) were used to study the ErbB2 overexpression. ErbB2 status was correlated with other clinico-pathological parameters, including patient survival. Results: ErbB-2 overexpression was detected in 43.2% (159/368) of the cases by immunohistochemistry. For a sub-set of patients (n = 55) for whom total DNA was available, ErbB-2 gene amplification was detected in 25.5% (14/55) of the cases by genomic PCR. While the ErbB2 overexpression was significantly higher in patients with lymphnode (χ2 = 12.06, P≤ 0.001), larger tumor size (χ2 = 8.22, P = 0.042) and ductal carcinoma (χ2 = 15.42, P ≤ 0.001), it was lower in patients with disease-free survival (χ2 = 22.13, P ≤ 0.001). Survival analysis on a sub-set of patients for whom survival data were available (n = 179) revealed that ErbB-2 status (χ2 =25.94, P ≤ 0.001), lymphnode status (χ2 = 12.68, P ≤ 0.001), distant metastasis (χ2 = 19.49, P ≤ 0.001) and stage of the disease (χ2 = 28.04, P ≤0.001) were markers of poor prognosis. Conclusions: ErbB-2 overexpression was significantly greater compared with the Western literature, but comparable to other Indian studies. Significant correlation was found between ErbB-2 status and lymphnode status, tumor size and ductal carcinoma. ErbB-2 status, lymph node status, distant metastasis and stage of the disease were found to be prognostic indicators.
Resumo:
This paper describes an approach for the analysis and design of 765kV/400kV EHV transmission system which is a typical expansion in Indian power grid system, based on the analysis of steady state and transient over voltages. The approach for transmission system design is iterative in nature. The first step involves exhaustive power flow analysis, based on constraints such as right of way, power to be transmitted, power transfer capabilities of lines, existing interconnecting transformer capabilities etc. Acceptable bus voltage profiles and satisfactory equipment loadings during all foreseeable operating conditions for normal and contingency operation are the guiding criteria. Critical operating strategies are also evolved in this initial design phase. With the steady state over voltages obtained, comprehensive dynamic and transient studies are to be carried out including switching over voltages studies. This paper presents steady state and switching transient studies for alternative two typical configurations of 765kV/400 kV systems and the results are compared. Transient studies are carried out to obtain the peak values of 765 kV transmission systems and are compared with the alternative configurations of existing 400 kV systems.
Surface freshwater from Bay of Bengal runoff and Indonesian Throughflow in the Tropical Indian Ocean
Resumo:
According to recent estimates, the annual total continental runoff into the Bay of Bengal (BoB) is about 2950 km 3, which is more than half that into the entire tropical Indian Ocean (IO). Here we use climatological observations to trace the seasonal pathways of near surface freshwater from BoB runoff and Indonesian Throughflow (ITF) by removing the net contribution from precipitation minus evaporation. North of 20 degrees S, the amount of freshwater from BoB runoff and ITF changes with season in a manner consistent with surface currents from drifters. BoB runoff reaches remote regions of the Arabian Sea; it also crosses the equator in the east to join the ITF. This freshwater subsequently flows west across the southern tropical IO in the South Equatorial Current.
Resumo:
During the course of genome studies in a rural community in the South Indian state of Karnataka, DNA-based investigations and counselling for familial adenomatous polyposis (FAP) were requested via the community physician. The proposita died in 1940 and FAP had been clinically diagnosed in 2 of her 5 children, both deceased. DNA samples from 2 affected individuals in the third generation were screened for mutations in the APC gene, and a frame-shift mutation was identified in exon 15 with a common deletion at codon 1061. Predictive testing for the mutation was then organized on a voluntary basis. There were 11 positive tests, including confirmatory positives on 2 persons diagnosed by colonoscopy, and to date surgery has been successfully undertaken on 3 previously undiagnosed adults. The ongoing success of the study indicates that, with appropriate access to the facilities offered by collaborating centres, predictive testing is feasible for diseases such as FAP and could be of significant benefit to communities in economically less developed countries.
Resumo:
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by expansion of GAA repeats in the frataxin gene. We have carried out the first molecular analysis at the Friedreich's ataxia locus in the Indian population. Materials and methods - Three families clinically diagnosed for Friedreich's ataxia were analyzed for GAA expansion at the FRDA locus. The distribution of GAA repeats was also estimated in normal individuals of Indian origin. Results - All patients clinically diagnosed for Friedreich's ataxia were found to be homozygous for GAA repeat expansion. The GAA repeat in the normal population show a bimodal distribution with 94% of alleles ranging from 7-16 repeats. Conclusion - Indian patients with expansion at the FRDA locus showed typical clinical features of Friedreich's ataxia. The low frequency of large normal alleles (6%) could indicate that the prevalence of this disease in the Indian population is likely to be low.
Resumo:
Thermal power stations use pulverized coal as fuel, producing enormous quantities of ash as a by-product of combustion. Currently, with very low utilization of the ash produced, the ash deposits at the thermal power stations are increasing rapidly. The disposal problem is expected to become alarming due to the limited space available for ash disposal near most thermal power stations. Among the various applications available for the use of fly ash, geotechnical application offers opportunity for its bulk utilization. However, the possibility of ground and surface water contamination due to the leaching of toxic elements present in the fly ash needs to be addressed. This paper describes a study carried out on two Indian fly ashes. It is found that pH is the controlling factor in the leaching behavior of fly ashes.
Resumo:
The present article about the high speed water tunnel facility at the Indian Institute of Science, Bangalore, provides a general description of the tunnel circuit, and brief reports on the performance of the facility and some typical results from investigations carried out in it. A unique aspect of the facility is that it has a horizontal resorber in the form of a large cylindrical tank located in the lower leg of the circuit. The facility has been used, among other things, for flow visualization studies, and investigations on marine propeller hydrodynamics and “synthetic cavitation”. The last topic has been primarily developed at the Indian Institute of Science and shows considerable promise for basic work in cavitation inception and noise.
Resumo:
A link between the Atlantic Multidecadal Oscillation (AMO) and multidecadal variability of the Indian summer monsoon rainfall is unraveled and a long sought physical mechanism linking Atlantic climate and monsoon has been identified. The AMO produces persistent weakening (strengthening) of the meridional gradient of tropospheric temperature (TT) by setting up negative (positive) TT anomaly over Eurasia during northern late summer/autumn resulting in early (late) withdrawal of the south west monsoon and persistent decrease (increase) of seasonal monsoon rainfall. On inter-annual time scales, strong North Atlantic Oscillation (NAO) or North Annular mode (NAM) influences the monsoon by producing similar TT anomaly over Eurasia. The AMO achieves the interdecadal modulation of the monsoon by modulating the frequency of occurrence of strong NAO/NAM events. This mechanism also provides a basis for explaining the observed teleconnection between North Atlantic temperature and the Asian monsoon in paleoclimatic proxies. Citation: Goswami, B. N., M. S. Madhusoodanan, C. P. Neema, and D. Sengupta (2006), A physical mechanism for North Atlantic SST influence on the Indian summer monsoon
Resumo:
In this paper, we suggest criteria for the identification of active and break events of the Indian summer monsoon on the basis of recently derived high resolution daily gridded rainfall dataset over India (1951-2007). Active and break events are defined as periods during the peak monsoon months of July and August, in which the normalized anomaly of the rainfall over a critical area, called the monsoon core zone exceeds 1 or is less than -1.0 respectively, provided the criterion is satisfied for at least three consecutive days. We elucidate the major features of these events. We consider very briefly the relationship of the intraseasonal fluctuations between these events and the interannual variation of the summer monsoon rainfall. We find that breaks tend to have a longer life-span than active spells.While, almost 80% of the active spells lasted 3-4 days, only 40% of the break spells were of such short duration. A small fraction (9%) of active spells and 32% of break spells lasted for a week or longer. While active events occurred almost every year, not a single break occurred in 26% of the years considered. On an average, there are 7 days of active and break events from July through August. There are no significant trends in either the days of active or break events. We have shown that there is a major difference between weak spells and long intense breaks. While weak spells are characterized by weak moist convective regimes, long intense break events have a heat trough type circulation which is similar to the circulation over the Indian subcontinent before the onset of the monsoon. The space-time evolution of the rainfall composite patterns suggests that the revival from breaks occurs primarily from northward propagations of the convective cloud zone. There are important differences between the spatial patterns of the active/break spells and those characteristic of interannual variation, particularly those associated with the link to ENSO. Hence, the interannual variation of the Indian monsoon cannot be considered as primarily arising from the interannual variation of intraseasonal variation. However, the signature over the eastern equatorial Indian Ocean on intraseasonal time scales is similar to that on the interannual time scales.