894 resultados para Synaptic Plasticity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Repeated low-dose morphine treatment facilitates delayed-escape behaviour of hippocampus-dependent Morris water maze and morphine withdrawal influences hippocampal NMDA receptor-dependent synaptic plasticity. Here, we examined whether and how morphine wit

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The network oscillation and synaptic plasticity are known to be regulated by GABAergic inhibition, but how they are affected by changes in the GABA transporter activity remains unclear. Here we show that in the CA1 region of mouse hippocampus, pharmacolog

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic exposure to opiates impairs hippocampal long-term potentiation (LTP) and spatial memory, but the underlying mechanisms remain to be elucidated. Given the well known effects of adenosine, an important neuromodulator, on hippocampal neuronal excitability and synaptic plasticity, we investigated the potential effect of changes in adenosine concentrations on chronic morphine treatment-induced impairment of hippocampal CA1 LTP and spatial memory. We found that chronic treatment in mice with either increasing doses (20-100 mg/kg) of morphine for 7 d or equal daily dose (20 mg/kg) of morphine for 12 d led to a significant increase of hippocampal extracellular adenosine concentrations. Importantly, we found that accumulated adenosine contributed to the inhibition of the hippocampal CA1 LTP and impairment of spatial memory retrieval measured in the Morris water maze. Adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine significantly reversed chronic morphine-induced impairment of hippocampal CA1 LTP and spatial memory. Likewise, adenosine deaminase, which converts adenosine into the inactive metabolite inosine, restored impaired hippocampal CA1 LTP. We further found that adenosine accumulation was attributable to the alteration of adenosine uptake but not adenosine metabolisms. Bidirectional nucleoside transporters (ENT2) appeared to play a key role in the reduction of adenosine uptake. Changes in PKC-alpha/beta activity were correlated with the attenuation of the ENT2 function in the short-term (2 h) but not in the long-term (7 d) period after the termination of morphine treatment. This study reveals a potential mechanism by which chronic exposure to morphine leads to impairment of both hippocampal LTP and spatial memory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated. On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and affects synaptic plasticity. On the other hand, the theory of reinforcement learning provides a framework for reward-based learning. Recent models of reward-modulated spike-timing-dependent plasticity have made first steps towards bridging the gap between the two approaches, but faced two problems. First, reinforcement learning is typically formulated in a discrete framework, ill-adapted to the description of natural situations. Second, biologically plausible models of reward-modulated spike-timing-dependent plasticity require precise calculation of the reward prediction error, yet it remains to be shown how this can be computed by neurons. Here we propose a solution to these problems by extending the continuous temporal difference (TD) learning of Doya (2000) to the case of spiking neurons in an actor-critic network operating in continuous time, and with continuous state and action representations. In our model, the critic learns to predict expected future rewards in real time. Its activity, together with actual rewards, conditions the delivery of a neuromodulatory TD signal to itself and to the actor, which is responsible for action choice. In simulations, we show that such an architecture can solve a Morris water-maze-like navigation task, in a number of trials consistent with reported animal performance. We also use our model to solve the acrobot and the cartpole problems, two complex motor control tasks. Our model provides a plausible way of computing reward prediction error in the brain. Moreover, the analytically derived learning rule is consistent with experimental evidence for dopamine-modulated spike-timing-dependent plasticity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bistable dynamical switches are frequently encountered in mathematical modeling of biological systems because binary decisions are at the core of many cellular processes. Bistable switches present two stable steady-states, each of them corresponding to a distinct decision. In response to a transient signal, the system can flip back and forth between these two stable steady-states, switching between both decisions. Understanding which parameters and states affect this switch between stable states may shed light on the mechanisms underlying the decision-making process. Yet, answering such a question involves analyzing the global dynamical (i.e., transient) behavior of a nonlinear, possibly high dimensional model. In this paper, we show how a local analysis at a particular equilibrium point of bistable systems is highly relevant to understand the global properties of the switching system. The local analysis is performed at the saddle point, an often disregarded equilibrium point of bistable models but which is shown to be a key ruler of the decision-making process. Results are illustrated on three previously published models of biological switches: two models of apoptosis, the programmed cell death and one model of long-term potentiation, a phenomenon underlying synaptic plasticity. © 2012 Trotta et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A venerable history of classical work on autoassociative memory has significantly shaped our understanding of several features of the hippocampus, and most prominently of its CA3 area, in relation to memory storage and retrieval. However, existing theories of hippocampal memory processing ignore a key biological constraint affecting memory storage in neural circuits: the bounded dynamical range of synapses. Recent treatments based on the notion of metaplasticity provide a powerful model for individual bounded synapses; however, their implications for the ability of the hippocampus to retrieve memories well and the dynamics of neurons associated with that retrieval are both unknown. Here, we develop a theoretical framework for memory storage and recall with bounded synapses. We formulate the recall of a previously stored pattern from a noisy recall cue and limited-capacity (and therefore lossy) synapses as a probabilistic inference problem, and derive neural dynamics that implement approximate inference algorithms to solve this problem efficiently. In particular, for binary synapses with metaplastic states, we demonstrate for the first time that memories can be efficiently read out with biologically plausible network dynamics that are completely constrained by the synaptic plasticity rule, and the statistics of the stored patterns and of the recall cue. Our theory organises into a coherent framework a wide range of existing data about the regulation of excitability, feedback inhibition, and network oscillations in area CA3, and makes novel and directly testable predictions that can guide future experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has long been recognised that statistical dependencies in neuronal activity need to be taken into account when decoding stimuli encoded in a neural population. Less studied, though equally pernicious, is the need to take account of dependencies between synaptic weights when decoding patterns previously encoded in an auto-associative memory. We show that activity-dependent learning generically produces such correlations, and failing to take them into account in the dynamics of memory retrieval leads to catastrophically poor recall. We derive optimal network dynamics for recall in the face of synaptic correlations caused by a range of synaptic plasticity rules. These dynamics involve well-studied circuit motifs, such as forms of feedback inhibition and experimentally observed dendritic nonlinearities. We therefore show how addressing the problem of synaptic correlations leads to a novel functional account of key biophysical features of the neural substrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1、KMBZ-009 改善高台应激所致认知障碍和应激相关的抑郁样行为及其相关机理 研究。 虽然适当的应激会提高动物的学习记忆功能,但过量的应激特别是无法逃避 的应激,往往导致依赖海马或前额叶的学习记忆功能受损,这与应激改变脑内应 激激素(皮质酮,皮质醇等)和神经递质的释放,影响突触传递和可塑性(包括 长时程增强和长时程抑制,LTP 和LTD)有关。一些疾病的发生、发展和恶化, 比如抑郁症(Depression)、创伤后应激障碍(PTSD),往往也和应激相关联,其 神经化学基础被证实与内分泌系统和单胺类(如五羟色,去甲肾上腺素,多巴胺) 神经递质系统的功能密切相关。遗憾的是,到目前为止还没有发现能治疗应激的 药物。本实验室过去的研究证实:KMBZ-009(申报新药时的名称为芬克罗酮,英 文名Phenchlobenpyrrone)——一种新的取代吡咯烷酮类化合物,通过调节细胞 内钙,改变脑内神经递质的释放,从而影响脑高级功能。KMBZ-009 对神经递质 释放影响是否能减轻应激导致的认知障碍及应激相关疾病的发生还没有进行研 究。本研究采用Morris 水迷宫、行为操作箱、绝望游泳、膜片钳和活体电生理 技术研究了KMBZ-009 对高台应激所致认知障碍和应激相关的抑郁样行为的影响 及其相关机理。 研究结果发现,高台应激或皮质酮注射造成大鼠空间记忆提取障碍,这与其 导致的海马CA1 区突触可塑性改变有关,而KMBZ-009 能成剂量依赖性地逆转应 激对空间记忆提取的损伤作用,这与它阻断应激或皮质酮异化的LTD 和恢复应激 或皮质酮损伤的LTP 密切相关。KMBZ-009 能部分地降低因应激而升高的血清皮 质酮含量,此外,KMBZ-009 对大鼠海马CA1 区锥体神经元的兴奋和抑制电流的 影响可能也参与了其对应激的调节作用。KMBZ-009 能显著增加海马CA1 区锥体 神经元上AMPA 受体介导的兴奋性突触后电流(EPSC)的幅度,但不影响其动力 学特性。NMDA 受体介导的EPSC 不受KMBZ-009 的影响;GABA 受体介导的抑制突 触后电流(IPSC)的幅度几乎不受KMBZ-009 的影响,而其受体动力学特性明显 被KMBZ-009 改变,表现为IPSC 恢复的时间显著延长。KMBZ-009 对CA1 区兴奋 抑制电流的调节作用,使大鼠海马细胞具有更强的维持细胞稳态的能力,从而避免应激导致神经元功能的损害。KMBZ-009 对抗应激对认知得损伤作用提示其可 能会减少动物的抑郁样行为,本实验结果发现,KMBZ-009 确实能明显减少小鼠 在强迫游泳(FST)中的不动时间,增加大鼠在72 秒低频差式强化(DRL-72s) 模型中的强化率,并降低其反应率。其机制是KMBZ-009 增加正常动物中枢神经 系统胞外NE 水平,激活alpha 和beta 肾上腺素受体,从而使得实验动物的抑郁 样行为明显减少。 2、KMBZ-009 减轻氧化应激对细胞活力、线粒体电位及海马LTP 的损伤作用。 前人的研究表明,氧自由基过多是导致老年痴呆患者和老年人神经细胞凋亡 与认知障碍的因素之一。KMBZ-009 和阿尼西坦是吡咯烷酮类化合物,研究显示 均具有促智作用。有报道指出阿尼西坦能减少神经胶质细胞在缺血缺氧时氧自由 基的生成,从而避免细胞受到氧应激损伤。本研究采用神经元原代培养和离体电 生理学方法,观察了KMBZ-009 和阿尼西坦对氧应激神经元的保护作用。结果发 现,KMBZ-009 和阿尼西坦均能保护氧应激神经元的线粒体的功能,对抗氧自由 基对神经元细胞活力的损伤,从而有效逆转了氧化应激对海马脑片CA1 区LTP 的 损伤作用。KMBZ-009 的作用效果比阿尼西坦的效果强10 倍。 3、银杏叶提取物及复方制剂改善老年大鼠空间学习记忆的突触可塑性机理。 有研究表明,银杏叶和三七叶提取物能调节神经系统的功能。本研究采用 Morris 水迷宫和活体电生理技术研究了银杏三七复方制剂及银杏叶提取物(以 标准银杏叶提取物——金纳多作为阳性对照药)改善老年大鼠空间学习记忆障碍 的突触可塑性机理研究。结果发现:老年大鼠空间学习记忆能力较差,高频诱导 不能在其海马CA1 区引发LTP,当长期服用金纳多或复方制剂一个月后,老年动 物的空间学习记忆功能得到明显改善,这可能与药物增强海马LTP 有密切关系。 复方制剂的作用效果与金纳多的效果相当。 4、悬尾应激损伤避暗作业学习行为的多巴胺D1 受体机制。 近年来的研究表明,DA 系统对应激非常敏感,应激改变PFC 内DA 的含量, 从而导致依赖于PFC 的工作记忆受损。但目前尚不知道应激对DA 系统的影响是 否涉及依赖杏仁核和海马的情绪学习记忆功能。因此,我们采用被动回避作业和 行为药理学的方法,初步探讨了此问题。结果发现:和对照组动物相比,随着悬 尾应激持续时间的增加(5min、10min、20min),动物在避暗作业作业重测试中的步入潜伏期明显缩短,当动物被悬尾应激后回到鼠笼中休息20min,其步入潜 伏期无明显变化;腹腔注射DA D1 受体拮抗剂SCH23390 呈剂量依赖性地缩短动 物的步入潜伏期,但SCH23390 腹腔注射和悬尾应激共同处理实验动物时,此种 D1 受体拮抗剂能有效逆转应激对步入潜伏期的影响;进一步的研究发现,应激 或D1 受体拮抗剂对痛觉感受的影响不是其改变动物步入潜伏期的主要因素。本 研究结果表明悬尾应激导致脑内多巴胺释放过度增加,杏仁核(可能还有海马及 相关神经回路)内的D1 受体被过度激活,从而导致小鼠在操作被动回避任务时 的记忆获得障碍。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

海马突触可塑性是从细胞和分子水平上来阐述学习记忆机制,是学习记忆比 较直观的物质基础的一个体现。成瘾,是一种病态的、不可控制的吸食成瘾性药 物的行为,从某种角度来看,它也是一种记忆,通过篡夺正常生理神经通路产生 比正常生理反应强烈的可塑性,进而形成更有害的记忆。成瘾和学习记忆有很多 通路上甚至机制上的交叉,所以一部分研究学习记忆的方法可以用来研究成瘾。 应激,会影响正常的生理状态,并引发进一步的生化反应,进而影响到海马突触 可塑性和学习记忆。应激既然可以影响到学习记忆,而且成瘾的部分特征和学习 记忆又很相似,同时成瘾过程中基本上也伴随着应激,那么,应激在成瘾过程中 到底起着什么样的作用呢?它又是如何起作用的呢? 本文的实验致力于回答其中的部分问题,我们通过对吗啡成瘾过程中海马的 突触可塑性和学习记忆的研究发现:单次急性吗啡处理会在非应激动物上诱导出 突触增强,但是应激可以逆转吗啡引起的突触增强,诱导出长时程的突触抑制, 但是皮质酮的拮抗剂RU38486 可以阻断这种效果。皮质酮和吗啡可以产生动物 延迟逃避的现象,说明应激在成瘾过程中的重要影响。本实验对于应激在成瘾方 面的影响进行了研究,进一步的揭开了应激在其中的部分作用机制,这对于以后 的成瘾的形成及复吸的治疗都有一定的贡献。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在哺乳动物复杂的神经网络中,突触是信息传递的枢纽,其突触传递效能的持续性变化被称为突触可塑性(synaptic plasticity)。长时程增强(long-term potentiation,LTP)和长时程抑制(long-term depression,LTD)现象是两种经典的突触可塑性形式,被视作学习和记忆可能的物质基础,得到了广泛地关注。其中,海马CA1区谷氨酸能突触处的LTP和LTD目前研究得最为广泛。 α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid(AMPA)受体作为介导兴奋性谷氨酸能突触基础传递的主要受体,是海马CA1区LTP和LTD正常表达的必要条件。近期的研究表明,AMPA受体通过胞吞、胞吐及侧向移动等方式在细胞膜和细胞内进行着持续地循环。因此,通过调节AMPA受体的上、下膜,进而影响突触后膜上AMPA受体的数量,便能对LTP和LTD产生影响。在本研究中,我们利用生物信息学的手段,以AMPA受体为靶点,设计出了旨在特异阻断LTP或LTD的多肽。运用离体脑片全细胞记录方式,在海马CA1区证明了干扰肽Pep-A2能够特异地阻断LTP而不影响LTD,Pep-A3能够特异地阻断LTD而不影响LTP。并初步探究了其关键的作用位点,为进一步理解LTP和LTD具体的分子机理打下了基础。成瘾作为异常的学习记忆过程,势必涉及到突触可塑性的变化。而特异性地阻断LTP和LTD,对药物成瘾效果的影响却鲜有报道(Wang YT,2007)。在另一部分工作中,我们采用穿膜肽Tat-A2和Tat-A3,在吗啡条件化位置偏爱(morphine conditioned place preference,morphine CPP)模型小鼠的测试前进行系统给药,结果发现两种干扰肽均能阻断或损伤其CPP的表达过程。这一现象,提示我们LTP和LTD在条件化位置偏爱的表达过程中都是不可或缺的,同时也为人们更好地理解成瘾过程的机理,及开发专一有效的治疗药物提供了新的思路。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

海马在某些类型的学习和记忆中起着关键的作用,而突触可塑性(synaptic plasticity)为学习和记忆的模型提供了理论基础。在海马环路中,分布着各种类型的可塑性,包括突触特异的Hebbian形式的可塑性,如长时程增强(long-term potentiation,LTP)和长时程抑制(long-term depression,LTD);稳态可塑性(homeostatic plasticity),如突触缩放(synaptic scaling)。稳态可塑性是一种整体的调控过程,它可以调节神经元甚至神经网络的平衡;而Hebbian可塑性则是突触特异的,即每个突触进行单独调控的过程。 越来越多的研究提示稳态可塑性和Hebbian可塑性之间存在着空间间隙(spatial gap),那么,如何使得神经元可以通过Hebbian可塑性的过程来维持细胞整体的兴奋性就变得尤为重要。一些报道揭示了LTP和LTD可以在同一突触通路中同时被激活,因此,我们提出组合突触可塑性的概念,即LTP和LTD的组合,它在赋予系统灵活性的同时又可以降低噪音维持系统的稳定性。基于此,本文将围绕这个问题而开展实验工作。 通过对海马CA1区锥体神经元的微小兴奋性突触后电流(miniature excitatory synaptic current, mEPSC)进行测定分析,我们发现mEPSC的幅度分布符合双峰正态分布(double-peak normal distribution)。Theta节律刺激(theta burst stimuli, TBS)诱导后,mEPSC的幅度分布发生改变,呈现右移趋势。随后,采用干扰肽Pep-A2特异地阻断LTP而不影响LTD,我们发现Pep-A2不影响基础状态下mEPSC的幅度分布。在干扰肽Pep-A2存在下,TBS诱导对基础状态下mEPSC的幅度分布也没有影响。结果为揭示LTP和LTD的组合可塑性提供了初步的证据,对进一步理解记忆的编码过程提供了一定的基础。社交隔离可以引起实验大鼠产生焦虑样和抑郁样的行为,而性经历可以改变动物的情绪状态,降低焦虑样和抑郁样的反应。然而,性经历后进行社交隔离对大鼠情绪的影响并没有报道。在这部分工作中,雄性大鼠经历一周的社交活动(male-male paired housing)或者性活动(male-female paired housing),随后进行一段时间的隔离(1天,2天或者7天)。我们发现,经历过性活动的大鼠,无论隔离与否都表现出相似的情绪反应,包括焦虑样和抑郁样行为以及超声波(ultrasonic vocalizations,USVs)发放;而未经历过性活动的大鼠,其情绪反应随着隔离时间的不同而不同。这一现象提示我们,先前的性经历可以对抗实验动物对环境应激事件,如社交隔离的反应。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

突触可塑性(syanptic plasticity)是指在某种条件下突触传递效能的持 续性变化,是从细胞和分子水平上来阐述学习记忆的机制,是学习记忆的基础, 存在多种形式,主要包括长时程增强(LTP)和长时程抑制(LTD)等。应激(stress) 就是指机体对各种内、外界刺激因素所作出的适应性反应的过程。应激会影响正 常的生理状态,并引发进一步的生化反应,进而影响到海马突触可塑性和学习记 忆。成瘾(addiction)是指对药物的使用失去控制,或者强迫性的寻求和使用 药物,而不顾由此带来的恶性后果,从某种角度来看,它也是一种记忆,通过篡 夺正常生理神经通路而产生比正常生理反应更强烈的可塑性,进而形成有害的异 常记忆,其最核心的特征就是对药物的强迫性渴求和复吸。成瘾一旦形成,可能 成为伴随一生的状态,即使经过长期的戒断,也会表现出强烈的渴求以及有复吸 的高度危险性。成瘾和学习记忆有很多神经通路甚至分子机制上的交叉,所以一 部分研究学习记忆的方法可以用来研究成瘾,反之,成瘾也是一种很好的研究学 习记忆的模型。 既然应激可以影响突触可塑性和学习记忆,而对于吸毒者来说,戒断本身就 是一种应激,那么探讨应激和戒断对突触可塑性和学习记忆的影响,对临床上的 戒毒工作将有着重要意义。基于此,本文将围绕这个问题而开展实验工作。 我们采用电生理、行为学及生化等研究方法对吗啡戒断过程中突触可塑性和 学习记忆,以及应激在其中的作用进行了一些研究。电生理的结果表明:在吗啡 戒断过程中,海马LTP 的大小呈现出倒-U 型曲线,其中戒断4 天时LTP 最大。 应激可以将最大的LTP 提前在戒断18 小时出现,而糖皮质激素受体拮抗剂米非司酮或者熄灭剂量的吗啡能够阻断最大的LTP 出现。同时,海马下托-伏隔核通 路的突触可塑性也出现类似的戒断时间依赖性的改变。行为学研究发现:戒断过 程中,大鼠的疼痛阈值降低,同时降低急性吗啡的镇痛效应,而这种变化能够被 应激或米非司酮所改变。另外,条件位置偏爱实验结果显示吗啡条件位置偏爱的 形成依赖于海马和伏隔核糖皮质激素受体。生化实验结果显示:戒断过程中,AMPA 受体亚型GluR1 和GluR2/3 及其调节分子CaMKⅡ会出现表达动态改变。 本实验对于应激和戒断对突触可塑性和学习记忆的影响进行了研究,进一步 揭开了应激在戒断中的部分作用机制,这将对于以后研究治疗毒品渴求和复吸有 一定的贡献

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gene regulation is required for activity-dependent changes in synaptic plasticity and remodeling. The metabotropic glutamate receptors (mGluRs) contribute to different brain functions, including learning/memory, mental disorders, drug addiction, and persistent pain in the CNS. We found that Gp I mGluRs activate PLCß through Gq and then lead to activation of several calcium-dependent signaling pathways, including ERK, which play an important role in gene transcription. These findings support a calcium-dependent role for Gq in release of Calcium and activation of calcium-stimulated adenylyl cyclases I in activity-dependent transcription in response to application of group I metabotropic glutamate receptors agonist and may provide insights into group I mGluRs-dependent synaptic plasticity through MAP kinases signaling. Moreover, the present study investigated the transcription-dependent changes of Arc in response to the activation of group I mGluRs and suggested the central role of ERK1/2 in group I mGluR-mediated Arc transcription. Further, we selected APP-interaction protein FE65 to investigate the mechanism of transcription-related process in synaptic plasticity. FE65 is expressed predominantly in the brain, and interacts with the C-terminal domain of β-amyloid precursor protein (APP). We examined hippocampus-dependent memory and in vivo long-term potentiation (LTP) at the CA1 synapses with the isoform-specific FE65 knock-out (p97FE65-/-) mice. p97FE65 knock-out mice showed impaired short-term memory for both TDPA and CFC when tested 10min after training, which is transcription-independent. Consistently, at the Schaffer collateral-CA1 synapses, p97FE65 knock-out mice showed defective early phase LTP. These results demonstrate novel roles of FE65 in synaptic plasticity, acquisition, and retention for certain forms of memory formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Making use of very detailed neurophysiological, anatomical, and behavioral data to build biological-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalabiltiy, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multu-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions of ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further developement of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effecitively collaborate using a modern neural simulation platform.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Making use of very detailed neurophysiological, anatomical, and behavioral data to build biologically-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalability, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multi-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions or ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further development of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effectively collaborate using a modern neural simulation platform.