965 resultados para Surface molecular imprint
Resumo:
Drying kinetics of low molecular weight sugars such as fructose, glucose, sucrose and organic acid such as citric acid and high molecular weight carbohydrate such as maltodextrin (DE 6) were determined experimentally using single drop drying experiments as well as predicted numerically by solving the mass and heat transfer equations. The predicted moisture and temperature histories agreed with the experimental ones within 6% average relative (absolute) error and average difference of +/- 1degreesC, respectively. The stickiness histories of these drops were determined experimentally and predicted numerically based on the glass transition temperature (T-g) of surface layer. The model predicted the experimental observations with good accuracy. A nonsticky regime for these materials during spray drying is proposed by simulating a drop, initially 120 mum in diameter, in a spray drying environment.
Resumo:
Part replacement and repair is needed in structures with moving parts because of scratchability and wear. In spite of some accumulation of experimental evidence, scratch resistance is still not well understood. We have applied molecular dynamics to study scratch resistance of amorphous polymeric materials through computer simulations. As a first approach, a coarse grain model was created for high density polyethylene at the mesoscale. We have also extended the traditional approach and used real units rather than reduced units (to our knowledge, for the first time), which enable an improved quantification of simulation results. The obtained results include analysis of penetration depth, residual depth and recovery percentage related to indenter force and size. Our results show there is a clear effect from these parameters on the tribological properties. We also discuss a "crooked smile" effect on the scratched surface and the reasons for its appearance.
Resumo:
The assessment of surface water nanofiltration (NF) for the removal of endocrine disruptors (EDs) Nonylphenol Ethoxylate (IGEPAL), 4-Nonylphenol (NP) and 4-Octylphenol (OP) was carried out with three commercial NF membranes - NF90, NF200, NF270. The permeation experiments were conducted in laboratory flat-cell units of 13.2 x 10(-4) m(2) of surface area and in a DSS Lab-unit M20 with a membrane surface area of 0.036 m2. The membranes hydraulic permeabilities ranged from 3.7 to 15.6 kg/h/m(2)/bar and the rejection coefficients to NaCl, Na2SO4 and Glucose are for NF90: 97%, 99% and 97%, respectively; for NF200: 66%, 98% and 90%, respectively and for NF270: 48%, 94% and 84%, respectively. Three sets of nanofiltration experiments were carried out: i) NF of aqueous model solutions of NP, IGEPAL and OP running in total recirculation mode; ii) NF of surface water from Rio Sado (Settibal, Portugal) running in concentration mode; iii) NF of surface water from Rio Sado inoculated with NP, IGEPAL and OP running in concentration mode. The results of model solutions experiments showed that the EDs rejection coefficients are approximately 100% for all the membranes. The results obtained for the surface water showed that the rejection coefficients to natural organic Matter (NOM) are 94%, 82% and 78% for NF90, NF200 and NF 270 membranes respectively, with and without inoculation of EDs. The rejection coefficients to EDs in surface water with and without inoculation of EDs are 100%, showing that there is a fraction of NOM of high molecular weight that retains the EDs in the concentrate and that there is a fraction of NOM of low molecular weight that permeates through the NF membranes free of EDs.
Resumo:
The relentless discovery of cancer biomarkers demands improved methods for their detection. In this work, we developed protein imprinted polymer on three-dimensional gold nanoelectrode ensemble (GNEE) to detect epithelial ovarian cancer antigen-125 (CA 125), a protein biomarker associated with ovarian cancer. CA 125 is the standard tumor marker used to follow women during or after treatment for epithelial ovarian cancer. The template protein CA 125 was initially incorporated into the thin-film coating and, upon extraction of protein from the accessible surfaces on the thin film, imprints for CA 125 were formed. The fabrication and analysis of the CA 125 imprinted GNEE was done by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The surfaces of the very thin, protein imprinted sites on GNEE are utilized for immunospecific capture of CA 125 molecules, and the mass of bound on the electrode surface can be detected as a reduction in the faradic current from the redox marker. Under optimal conditions, the developed sensor showed good increments at the studied concentration range of 0.5–400 U mL−1. The lowest detection limit was found to be 0.5 U mL−1. Spiked human blood serum and unknown real serum samples were analyzed. The presence of non-specific proteins in the serum did not significantly affect the sensitivity of our assay. Molecular imprinting using synthetic polymers and nanomaterials provides an alternative approach to the trace detection of biomarker proteins.
Resumo:
Dissertation presented to obtain a Ph.D. Degree in Chemical Physics
Resumo:
An IgG2a subclass monoclonal antibody, C6G9, was obtained by immunization of BALB/c mice with Schistosoma mansoni egg antigens. With this monoclonal antibody, it was possible to identify a schistosomular antigen with a molecular weight of 46 kilodaltons (KDa), and its expression being evaluated by means of indirect immunofluorescence. The antigen persisted in the integument of the developing schistosomulum, for at least 96 hours post-transformation. The monoclonal antibody also reacted with the cercaria surface, but not with that of adult worm. The C6G9 was also able to mediate significant levels of cytotoxicity in the presence of complement for newly transformed schistosomula.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Biológica – especialidade Engenharia Genética, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
6th Graduate Student Symposium on Molecular Imprinting
Resumo:
Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP; MacMARCKS) are protein kinase C substrates in diverse cell types. Activation of murine macrophages by cytokines increases MRP expression, but infection with Leishmania promastigotes during activation results in MRP depletion. We therefore examined the effect of Leishmania major LV39 on recombinant MRP. Both live promastigotes and a soluble fraction of LV39 lysates degraded MRP to yield lower molecular weight fragments. Degradation was independent of MRP myristoylation and was inhibited by protein kinase C-dependent phosphorylation of MRP. MRP was similarly degraded by purified leishmanolysin (gp63), a Leishmania surface metalloprotease. Degradation was evident at low enzyme/substrate ratios, over a broad pH range, and was inhibited by 1,10-phenanthroline and by a hydroxamate dipeptide inhibitor of leishmanolysin. Using mass spectrometric analysis, cleavage was shown to occur within the effector domain of MRP between Ser(92) and Phe(93), in accordance with the substrate specificity of leishmanolysin. Moreover, an MRP construct in which the effector domain had been deleted was resistant to cleavage. Thus, Leishmania infection may result in leishmanolysin-dependent hydrolysis of MRP, a major protein kinase C substrate in macrophages.
Resumo:
Background. Streptococcus gallolyticus is a causative agent of infective endocarditis associated with colon cancer. Genome sequence of strain UCN34 revealed the existence of 3 pilus loci (pil1, pil2, and pil3). Pili are long filamentous structures playing a key role as adhesive organelles in many pathogens. The pil1 locus encodes 2 LPXTG proteins (Gallo2178 and Gallo2179) and 1 sortase C (Gallo2177). Gallo2179 displaying a functional collagen-binding domain was referred to as the adhesin, whereas Gallo2178 was designated as the major pilin. Methods. S. gallolyticus UCN34, Pil1(+) and Pil1(-), expressing various levels of pil1, and recombinant Lactococcus lactis strains, constitutively expressing pil1, were studied. Polyclonal antibodies raised against the putative pilin subunits Gallo2178 and Gallo2179 were used in immunoblotting and immunogold electron microscopy. The role of pil1 was tested in a rat model of endocarditis. Results. We showed that the pil1 locus (gallo2179-78-77) forms an operon differentially expressed among S. gallolyticus strains. Short pilus appendages were identified both on the surface of S. gallolyticus UCN34 and recombinant L. lactis-expressing pil1. We demonstrated that Pil1 pilus is involved in binding to collagen, biofilm formation, and virulence in experimental endocarditis. Conclusions. This study identifies Pil1 as the first virulence factor characterized in S. gallolyticus.
Resumo:
Rapport de synthèse : Contexte: l'hydroxyéthylamidon (HEA) est largement utilisé comme expanseur volémique en anesthésiologie et réanimation. Cependant, cette classe de produits perturbe le system de la coagulation. Des améliorations restent possibles dans le choix de la combinaison optimale de poids moléculaire, de degré de substitution en radicaux éthyle et de localisation de ces radicaux sur le squelette glucidique des polymères, afin d'optimiser leur efficacité et leur tolérance. L'HEA de poids moléculaire élevé et faiblement substitué n'affecte pas plus la coagulation sanguine que de l'HEA de bas poids moléculaire faiblement substitué. Nous examinons in vivo l'effet d'un abaissement du rapport C2/C6 sur les caractéristiques pharmacocinétiques et l'impact sur la coagulation sanguine d'un HEA de haut poids moléculaire faiblement substitué. Matériels et méthode: nous comparons dans une étude prospective, randomisée et parallèle l'HEA 650/0.42/2.8 avec l'HEA 650/0.42/5.6 auprès de 30 cochons. Avant, pendant et jusqu'à 630 minutes après une perfusion de 30 ml/kg d'HEA, des échantillons sanguins ont été collectés pour mesurer les concentrations d'HEA, les tests de coagulation plasmatique classiques et la coagulation sanguine par thrombélastographie (TEG®, Haemoscope Corporation, Niles, II, U.S.). Les paramètres pharmacocinétiques ont été estimés en adaptant un modèle à deux compartiments. Résultats: la constante d'élimination est de 0.009 ± 0.001 (min-1) pour l'HEA 650/0.42/2.8 et 0.007 ± 0.001 (min-1) pour l'HEA 650/0.42/5.6 (p<0.001); la surface sous la courbe de concentration est de 1374 ± 340 min*g/L pour l'HEA 650/0.42/2.8 et 1697 ± 411 min*g/L pour l'HEA 650/0.42/5.6 (p=0.026). Les concentrations mesurées d'HEA ne montrent pas de différence entre l'HEA 650/0.42/2.8 et l'HEA 650/0.42/5.6. Les deux solutions d'HEA affectent de façon identique la coagulation sanguine: l'index de coagulation thrombélastographique diminue pareillement à ta fin de la perfusion d'HEA 650/0.42/2.8 et d'HEA 650/0.42/5.6 (p=0.29). De même, le temps de thromboplastine partielle activée et le temps de prothrombine augmentent de manière similaire pour l'HEA 650/0.42/2.8 et l'HEA 650/0.42/5.6 (p=0.83). Conclusion: la réduction du rapport C2/C6 de l'HEA de poids moléculaire élevé et faiblement substitué aboutit à une élimination légèrement accélérée d'HEA. Cependant, elle ne modifie pas l'effet perturbateur sur la coagulation.
Resumo:
Based on histology, the placentae of eutherians are currently grouped in epitheliochorial, endotheliochorial and haemochorial placentae. In a haeckelian sense, the epitheliochorial contact with marked histiotrophic feeding by uterine milk is generally considered as primitive, especially since similar contacts exist in Marsupials. In contrast, the more intimate endotheliochorial and haemochorial contact, facilitating haemotrophic nutrition, is interpreted as a derived state. A cladistic analysis based on the phylogenetic relationships established by molecular analyses reveals that the basic clades are all characterized by an endotheliochorial or haemochorial placenta, and that the epitheliochorial placenta evolved at least three times in a convergent manner. This evolution may be explained by the fact that the epitheliochorial placenta in eutherians is more efficient in nutritional transfer (flow rate by exchange surface). Moreover, this arrangement may confer an advantage to the mother who can probably reduce the degree of manipulation by a genetically imprinted embryo.
Resumo:
Rosetting, i.e. the spontaneous binding of uninfected to malaria infected erythrocytes and endothelial cytoadherence may hinder the blood flow and lead to serve Plasmodium falciparum malaria. Falciparum isolates obtained from unconscious patients all form rosettes and/or express a significantly higher man rosetting rate than isolates from patients with uncomplicated malaria. Furthermore, sera of patients with cerebral malaria are devoid of anti-rosetting activity while sera from patients with mild disease carry high levels of anti-rosetting antibodies. The presence of anti-rosetting antibodies also seems important for the efficient interaction of rosetting infected rbc and leucocytes. Two parasite derived rosetting ligands of Mr 22k and Mr28K named "rosettins, have been found on the surface of rosetting infected erythrocytes. CD36 has in at least some strains of parasites been found to function as a rosetting receptor on the uninfectederythrocyte. Heparin disrupts rosettes of P. falciparum in vitro and inhibits the sequestration of rosetting cells ex vivo. In conclusion, rosetting seems a crucial factor in the development of cerebral malaria and treatment of patients with anti-rosetting substances might become an effectivew adjunct in the treatment of severe malaria.
Resumo:
Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.
Resumo:
The epithelial amiloride-sensitive sodium channel (ENaC) controls transepithelial Na+ movement in Na(+)-transporting epithelia and is associated with Liddle syndrome, an autosomal dominant form of salt-sensitive hypertension. Detailed analysis of ENaC channel properties and the functional consequences of mutations causing Liddle syndrome has been, so far, limited by lack of a method allowing specific and quantitative detection of cell-surface-expressed ENaC. We have developed a quantitative assay based on the binding of 125I-labeled M2 anti-FLAG monoclonal antibody (M2Ab*) directed against a FLAG reporter epitope introduced in the extracellular loop of each of the alpha, beta, and gamma ENaC subunits. Insertion of the FLAG epitope into ENaC sequences did not change its functional and pharmacological properties. The binding specificity and affinity (Kd = 3 nM) allowed us to correlate in individual Xenopus oocytes the macroscopic amiloride-sensitive sodium current (INa) with the number of ENaC wild-type and mutant subunits expressed at the cell surface. These experiments demonstrate that: (i) only heteromultimeric channels made of alpha, beta, and gamma ENaC subunits are maximally and efficiently expressed at the cell surface; (ii) the overall ENaC open probability is one order of magnitude lower than previously observed in single-channel recordings; (iii) the mutation causing Liddle syndrome (beta R564stop) enhances channel activity by two mechanisms, i.e., by increasing ENaC cell surface expression and by changing channel open probability. This quantitative approach provides new insights on the molecular mechanisms underlying one form of salt-sensitive hypertension.