959 resultados para Surface Oxide


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the changes in surface acidity/basicity and catalytic pro~erties of samarium oxide due to surface modification by SO42- ion. The acidity/basicity of the catalysts is determined by titration method using Hammett indicators. Esterification of acetic acid by n-butanol is chosen as a test reaction. Sm203, owing to its high basicity and low acidity, does not catalyze the reaction. But sulphated Sm20J catalyzes the esterification reaction effectively. Activation temperature does not have much effect on the acidity of sulphated samaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface electron donor properties of sulphate modified stannic oxide have been determined from the adsorption of electron acceptors of various electron affinities on the oxide surface. The acid base properties of stannic oxide have been determined by titration method using Hammett indicators. Catalytic activities of the oxide for esterification of acetic acid using n-butanol.reduction of cyclohexanone in 2-propanol and oxidation of cyclohexanol with benzophenone have been studied. The data have been correlated with the surface electron donor properties of these oxides. The activity for reduction and oxidation decreases and that for esterification reaction increases on modification with sulphate ion. It has heen found that electron donating capacity decreased when stannic oxide was modified with sulphate ion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation on the physical and chemical characterisation of rare earth oxide supported vanadia is attempted in the present study. La2O3, Sm2O3 and DY2O3 serve the purpose of supports. Supported catalysts were prepared and characterised using various physico chemical techniques. A detailed investigation of acid base properties is also carried out. The nature of interaction of vanadia with lanthanide oxide is discussed and the effect of vanadia loading on the activity of the systems towards reactions of industrial importance is explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, we have tried to evaluate systematically the surface properties of sulphated tin oxide systems modified with three different transition metal oxides viz. iron oxide, tungsten oxide and molybdenum oxide. The catalytic activities of these systems are checked and compared by carrying out some industrially important reactions such as oxidative dehydrogenation of ethylbenzene and Friedel-Crafts reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incorporation of transition metal oxide pillars such as those of iron and chromium along with Al2O3, pillars within the interlayers of a montmorillonite clay is investigated. The surface acidity of these catalysts has been evaluated for the first time employing the equilibrium adsorption of an electron donor, perylene, and the results are compared with those obtained by temperature programmed desorption of ammonia. The principle is based on the ability of a catalyst surface site to accept a single electron from an electron donor like perylene to form charge transfer complexes and the amount of adsorbed species is measured quantitatively by UV-vis spectroscopy. Fina1ly, an attempt has been made to correlate the acidity determined by the two independcnt methods and the catalytic activity of present systems in the benzoylation of toluene with benzoyl chloride. Incorporation of Fe and Cr has changed the properties of AI pitlared montmorillonite. Fe pillared systems have been found to be vcry good catalysts for benzoylation reaction

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron donating properties of Ce02 and its mixed oxides with alumina have been determined from the studies of adsorption of electron acceptors of various electron affinities on the surface of these oxides. The catalytic activity of these oxides towards some reactions such as oxidation of alcohols and reduction of ketones have been Correlated with their surface electrondonor properties. The surface acidity/basicity of these oxides have also been determined by titration method using a set of Hammett indicators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron donating properties of La2O3 activated at 300, 500 and 800·C and its mixed oxides with alumina are reported from the studies on adsorption of electron acceptors of varying electron affinity on La203. The electron acceptors with their electron affinity values given in parenthesis are: 7,7,8,8-tetracyanoquinodimethane (2.84 eV), 2,3,5,6-tetrachloro-I,4-benzoquinone (2.40 eV) and p-dinitrobenzene(l.77eV). The basicity of the oxide has been determined by titration with n-butylamine and Ho.max values are reported. The limit of electron transfer from the oxide to the electron acceptor is between 2.40 and 1.77 eV. It is observed that La203 promotes the surface electron properties of alumina without changing its limit of electron transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanum oxide, La2O3 has been found to be an effective catalyst for the liquid phase reduction of cyclohexanone. The catalytic activities of La2O3 activated at 300, 500 and 800·C and its mixed oxides with alumina for the reduction of cyclohexanone with 2-propanol have been determined and the data parallel that of the electron donating properties of the catalysts. The electron donating properties of the catalysts have been determined from the adsorption of electron acceptors of different electron affinities on the surface of these oxides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The limit of electron transfer in electron affinity from the oxide surface to the electron acceptor (EA) are reported from the adsorption of EA on DY203, mixed oxides of DY203 with alumina and mixed oxides of Y203 with y-alumina. The extent of electron transfer is understood from magnetic measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron donating properties, surface acidity/basicity and catalytic activity of lanthana for various dopant concentrations of strontium are reported at two activation temperatures. The catalytic activity has been correlated with electron donating properties and surface acidity/basicity of the oxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface acidity and basicity of ternary oxides of AI, Ce and Dy have been determined using a set of Hammett indicators. The data have been correlated with the catalytic activity of these oxides towards the liquid phase reduction of cyclohexanone in 2-propanol. The reaction is favoured by the higher basicity of the ternary oxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this thesis work is to optimize the growth conditions for obtaining crystalline and conducting Lao.5Sro.5Co03 (LSCO) and Lao.5Sro.5Coo.5.5Nio.5O3 (LSCNO) thin films at low processing temperatures. The films are prepared by radio frequency magnetron sputtering under various deposition conditions. The thin films were used as electrodes for the fabrication of ferroelectric capacitors using BaO.7SrO.3 Ti03 (BST) and PbZro.52 Tio.4803 (PZT). The structural and transport properties of the La1_xSrxCo03 and Lao.5Sro.5Co1_xNix03 are also investigated. The characterization of the bulk and the thin films were performed using different tools. A powder X-ray diffractometer was used to analyze the crystalline nature of the material. The transport properties were investigated by measuring the temperature dependence of resistivity using a four probe technique. The magnetoresistance and thermoelectric power were also used to investigate the transport properties. Atomic force microscope was used to study the surface morphology and thin film roughness. The ferroelectric properties of the capacitors were investigated using RT66A ferroelectric tester.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work mainly concentrate to understand the optical and electrical properties of amorphous zinc tin oxide and amorphous zinc indium tin oxide thin films for TFT applications. Amorphous materials are promising in achieving better device performance on temperature sensitive substrates compared to polycrystalline materials. Most of these amorphous oxides are multicomponent and as such there exists the need for an optimized chemical composition. For this we have to make individual targets with required chemical composition to use it in conventional thin film deposition techniques like PLD and sputtering. Instead, if we use separate targets for each of the cationic element and if separately control the power during the simultaneous sputtering process, then we can change the chemical composition by simply adjusting the sputtering power. This is what is done in co-sputtering technique. Eventhough there had some reports about thin film deposition using this technique, there was no reports about the use of this technique in TFT fabrication until very recent time. Hence in this work, co-sputtering has performed as a major technique for thin film deposition and TFT fabrication. PLD were also performed as it is a relatively new technique and allows the use high oxygen pressure during deposition. This helps to control the carrier density in the channel and also favours the smooth film surface. Both these properties are crucial in TFT.Zinc tin oxide material is interesting in the sense that it does not contain costly indium. Eventhough some works were already reported in ZTO based TFTs, there was no systematic study about ZTO thin film's various optoelectronic properties from a TFT manufacturing perspective. Attempts have made to analyse the ZTO films prepared by PLD and co-sputtering. As more type of cations present in the film, chances are high to form an amorphous phase. Zinc indium tin oxide is studied as a multicomponent oxide material suitable for TFT fabrication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Present work deals with the Preparation and characterization of high-k aluminum oxide thin films by atomic layer deposition for gate dielectric applications.The ever-increasing demand for functionality and speed for semiconductor applications requires enhanced performance, which is achieved by the continuous miniaturization of CMOS dimensions. Because of this miniaturization, several parameters, such as the dielectric thickness, come within reach of their physical limit. As the required oxide thickness approaches the sub- l nm range, SiO 2 become unsuitable as a gate dielectric because its limited physical thickness results in excessive leakage current through the gate stack, affecting the long-term reliability of the device. This leakage issue is solved in the 45 mn technology node by the integration of high-k based gate dielectrics, as their higher k-value allows a physically thicker layer while targeting the same capacitance and Equivalent Oxide Thickness (EOT). Moreover, Intel announced that Atomic Layer Deposition (ALD) would be applied to grow these materials on the Si substrate. ALD is based on the sequential use of self-limiting surface reactions of a metallic and oxidizing precursor. This self-limiting feature allows control of material growth and properties at the atomic level, which makes ALD well-suited for the deposition of highly uniform and conformal layers in CMOS devices, even if these have challenging 3D topologies with high aspect-ratios. ALD has currently acquired the status of state-of-the-art and most preferred deposition technique, for producing nano layers of various materials of technological importance. This technique can be adapted to different situations where precision in thickness and perfection in structures are required, especially in the microelectronic scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rare earths have provided fascinating field for chemists confronted with problems of their separation and purification. The rare earths become available in relatively pure form in recent years due to the development of efficient separation methods, largely as a byproduct of the atomic energy programmes of various countries. The rare earths often called lanthanides from La (Z=57) to Lu (Z=7l) display subtle variation of properties through the series, while the differences become appreciable for the elements that are farther apart.