876 resultados para Supervised internships
Resumo:
Introduction: Walking programmes are recommended as part of the initial treatment for intermittent claudication (IC). However, for many patients factors such as frailty, the severe leg discomfort associated with walking and safety concerns about exercising in public areas reduce compliance to such prescription. Thus, there is a need to identify a mode of exercise that provides the same benefits as regular walking while also offering convenience and comfort for these patients. The present study aims to provide evidence for the first time of the efficacy of a supervised cycle training programme compared with a conventional walking programme for the treatment of IC. Methods: Thus far 33 patients have been randomized to: a treadmill-training group (n = 12); a cycle-training group (n = 11); or a control group (n = 10). Training groups participated in three sessions of supervised training per week for a period of 6 weeks. Control patients received no experimental intervention. Maximal incremental treadmill testing was performed at baseline and after the 6 weeks of training. Measures included pain-free (PFWT) and maximal walking time (MWT), continuous heart rate and gas-analysis recording, and ankle-brachial index assessment. Results: In the treadmill trained group MWT increased significantly from 1016.7 523.7 to 1255.2 432.2 s (P < 0.05). MWT tended to increase with cycle training (848.72 333.18 to 939.54 350.35 s, P = 0.14), and remained unchanged in the control group (1555.1 683.23 to 1534.7 689.87 s). For PFWT, there was a non-significant increase in the treadmill-training group from 414.4 262.3 to 592.9 381.9 s, while both the cycle training and control groups displayed no significant change in this time (226.7 147.1 s to 192.3 56.8 and 499.4 503.7 s to 466.0 526.1 s, respectively). Conclusions: These preliminary results might suggest that, unlike treadmill walking, cycling has no clear effect on walking performance in patients with IC. Thus the current recommendations promoting walking based programmes appear appropriate. The present study was funded by the National Heart Foundation of Australia.
Resumo:
We have recently developed a principled approach to interactive non-linear hierarchical visualization [8] based on the Generative Topographic Mapping (GTM). Hierarchical plots are needed when a single visualization plot is not sufficient (e.g. when dealing with large quantities of data). In this paper we extend our system by giving the user a choice of initializing the child plots of the current plot in either interactive, or automatic mode. In the interactive mode the user interactively selects ``regions of interest'' as in [8], whereas in the automatic mode an unsupervised minimum message length (MML)-driven construction of a mixture of GTMs is used. The latter is particularly useful when the plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. We illustrate our approach on a data set of 2300 18-dimensional points and mention extension of our system to accommodate discrete data types.
Resumo:
An interactive hierarchical Generative Topographic Mapping (HGTM) ¸iteHGTM has been developed to visualise complex data sets. In this paper, we build a more general visualisation system by extending the HGTM visualisation system in 3 directions: bf (1) We generalize HGTM to noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM) developed in ¸iteKabanpami. bf (2) We give the user a choice of initializing the child plots of the current plot in either em interactive, or em automatic mode. In the interactive mode the user interactively selects ``regions of interest'' as in ¸iteHGTM, whereas in the automatic mode an unsupervised minimum message length (MML)-driven construction of a mixture of LTMs is employed. bf (3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualisation plots, since they can highlight the boundaries between data clusters. The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. We illustrate our approach on a toy example and apply our system to three more complex real data sets.
Resumo:
Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework called joint sentiment-topic (JST) model based on latent Dirichlet allocation (LDA), which detects sentiment and topic simultaneously from text. A reparameterized version of the JST model called Reverse-JST, obtained by reversing the sequence of sentiment and topic generation in the modeling process, is also studied. Although JST is equivalent to Reverse-JST without a hierarchical prior, extensive experiments show that when sentiment priors are added, JST performs consistently better than Reverse-JST. Besides, unlike supervised approaches to sentiment classification which often fail to produce satisfactory performance when shifting to other domains, the weakly supervised nature of JST makes it highly portable to other domains. This is verified by the experimental results on data sets from five different domains where the JST model even outperforms existing semi-supervised approaches in some of the data sets despite using no labeled documents. Moreover, the topics and topic sentiment detected by JST are indeed coherent and informative. We hypothesize that the JST model can readily meet the demand of large-scale sentiment analysis from the web in an open-ended fashion.
Resumo:
This article presents two novel approaches for incorporating sentiment prior knowledge into the topic model for weakly supervised sentiment analysis where sentiment labels are considered as topics. One is by modifying the Dirichlet prior for topic-word distribution (LDA-DP), the other is by augmenting the model objective function through adding terms that express preferences on expectations of sentiment labels of the lexicon words using generalized expectation criteria (LDA-GE). We conducted extensive experiments on English movie review data and multi-domain sentiment dataset as well as Chinese product reviews about mobile phones, digital cameras, MP3 players, and monitors. The results show that while both LDA-DP and LDAGE perform comparably to existing weakly supervised sentiment classification algorithms, they are much simpler and computationally efficient, rendering themmore suitable for online and real-time sentiment classification on the Web. We observed that LDA-GE is more effective than LDA-DP, suggesting that it should be preferred when considering employing the topic model for sentiment analysis. Moreover, both models are able to extract highly domain-salient polarity words from text.
Resumo:
Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.
Resumo:
Social streams have proven to be the mostup-to-date and inclusive information on cur-rent events. In this paper we propose a novelprobabilistic modelling framework, called violence detection model (VDM), which enables the identification of text containing violent content and extraction of violence-related topics over social media data. The proposed VDM model does not require any labeled corpora for training, instead, it only needs the in-corporation of word prior knowledge which captures whether a word indicates violence or not. We propose a novel approach of deriving word prior knowledge using the relative entropy measurement of words based on the in-tuition that low entropy words are indicative of semantically coherent topics and therefore more informative, while high entropy words indicates words whose usage is more topical diverse and therefore less informative. Our proposed VDM model has been evaluated on the TREC Microblog 2011 dataset to identify topics related to violence. Experimental results show that deriving word priors using our proposed relative entropy method is more effective than the widely-used information gain method. Moreover, VDM gives higher violence classification results and produces more coherent violence-related topics compared toa few competitive baselines.
Resumo:
The early stages of dieting to lose weight have been associated with neuro-psychological impairments. Previous work has not elucidated whether these impairments are a function solely of unsupported or supported dieting. Raised cortico-steroid levels have been implicated as a possible causal mechanism. Healthy, overweight, pre-menopausal women were randomised to one of three conditions in which they dieted either as part of a commercially available weight loss group, dieted without any group support or acted as non-dieting controls for 8 weeks. Testing occurred at baseline and at 1, 4 and 8 weeks post baseline. During each session, participants completed measures of simple reaction time, motor speed, vigilance, immediate verbal recall, visuo-spatial processing and (at Week 1 only) executive function. Cortisol levels were gathered at the beginning and 30 min into each test session, via saliva samples. Also, food intake was self-recorded prior to each session and fasting body weight and percentage body fat were measured at each session. Participants in the unsupported diet condition displayed poorer vigilance performance (p=0.001) and impaired executive planning function (p=0.013) (along with a marginally significant trend for poorer visual recall (p=0.089)) after 1 week of dieting. No such impairments were observed in the other two groups. In addition, the unsupported dieters experienced a significant rise in salivary cortisol levels after 1 week of dieting (p<0.001). Both dieting groups lost roughly the same amount of body mass (p=0.011) over the course of the 8 weeks of dieting, although only the unsupported dieters experienced a significant drop in percentage body fat over the course of dieting (p=0.016). The precise causal nature of the relationship between stress, cortisol, unsupported dieting and cognitive function is, however, uncertain and should be the focus of further research. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Natural language understanding is to specify a computational model that maps sentences to their semantic mean representation. In this paper, we propose a novel framework to train the statistical models without using expensive fully annotated data. In particular, the input of our framework is a set of sentences labeled with abstract semantic annotations. These annotations encode the underlying embedded semantic structural relations without explicit word/semantic tag alignment. The proposed framework can automatically induce derivation rules that map sentences to their semantic meaning representations. The learning framework is applied on two statistical models, the conditional random fields (CRFs) and the hidden Markov support vector machines (HM-SVMs). Our experimental results on the DARPA communicator data show that both CRFs and HM-SVMs outperform the baseline approach, previously proposed hidden vector state (HVS) model which is also trained on abstract semantic annotations. In addition, the proposed framework shows superior performance than two other baseline approaches, a hybrid framework combining HVS and HM-SVMs and discriminative training of HVS, with a relative error reduction rate of about 25% and 15% being achieved in F-measure.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited. In this paper we take a simple yet effective Bayesian approach to attributed graph learning. We present a naïve node-observation model, where we make the important assumption that the observation of each node and each edge is independent of the others, then we propose an EM-like approach to learn a mixture of these models and a Minimum Message Length criterion for components selection. Moreover, in order to avoid the bias that could arise with a single estimation of the node correspondences, we decide to estimate the sampling probability over all the possible matches. Finally we show the utility of the proposed approach on popular computer vision tasks such as 2D and 3D shape recognition. © 2011 Springer-Verlag.
Resumo:
In machine learning, Gaussian process latent variable model (GP-LVM) has been extensively applied in the field of unsupervised dimensionality reduction. When some supervised information, e.g., pairwise constraints or labels of the data, is available, the traditional GP-LVM cannot directly utilize such supervised information to improve the performance of dimensionality reduction. In this case, it is necessary to modify the traditional GP-LVM to make it capable of handing the supervised or semi-supervised learning tasks. For this purpose, we propose a new semi-supervised GP-LVM framework under the pairwise constraints. Through transferring the pairwise constraints in the observed space to the latent space, the constrained priori information on the latent variables can be obtained. Under this constrained priori, the latent variables are optimized by the maximum a posteriori (MAP) algorithm. The effectiveness of the proposed algorithm is demonstrated with experiments on a variety of data sets. © 2010 Elsevier B.V.
Resumo:
Permafrost landscapes experience different disturbances and store large amounts of organic matter, which may become a source of greenhouse gases upon permafrost degradation. We analysed the influence of terrain and geomorphic disturbances (e.g. soil creep, active-layer detachment, gullying, thaw slumping, accumulation of fluvial deposits) on soil organic carbon (SOC) and total nitrogen (TN) storage using 11 permafrost cores from Herschel Island, western Canadian Arctic. Our results indicate a strong correlation between SOC storage and the topographic wetness index. Undisturbed sites stored the majority of SOC and TN in the upper 70 cm of soil. Sites characterised by mass wasting showed significant SOC depletion and soil compaction, whereas sites characterised by the accumulation of peat and fluvial deposits store SOC and TN along the whole core. We upscaled SOC and TN to estimate total stocks using the ecological units determined from vegetation composition, slope angle and the geomorphic disturbance regime. The ecological units were delineated with a supervised classification based on RapidEye multispectral satellite imagery and slope angle. Mean SOC and TN storage for the uppermost 1?m of soil on Herschel Island are 34.8 kg C/m**2 and 3.4 kg N/m**2, respectively.