666 resultados para Supersonic nozzles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study of bleed and vortex generators in supersonic ow has been conducted. Methods were developed to analyze and directly compare the two systems' effects on turbulent boundary layers to better understand their potential to mitigate ow separation. LDA was used to measure two components of velocity in the boundary-layer for three cases|baseline, with bleed, or with a VG|at Mach numbers of 1.3, 1.5 and 1.8. The bleed system was comprised of a series of 2mm diameter normal holes operated at different suction rates, removing up to 10% of the incoming boundary layer. Three VG shapes were tested only at Mach 1.5 and 1.8. Measurements of the evolution of Hi and Cf downstream of each device indicate that Hi is not an appropriate parameter to gauge the effectiveness of vortex generators due to boundary layer wake distortion. The skin friction coeficient Cf may be a more appropriate measure. Similar increases in Cf were generated by VGs and bleed. The recovery to baseline conditions downstream of bleed was sensitive to Mach number, and more investigation of that effect will be required. Copyright © 2012 by University of Cambridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental comparison of several vortex generator geometries was conducted at Mach 1.5, 1.8, and 2.5 to better understand downstream vortex development as a function of device shape and Mach number. The devices had heights less than that of the boundary-layer ("micro"-vortex generators) and were either vane-shaped or of the alternative microramp geometry. LDV was used to measure two components of velocity at several stations downstream of the devices. The velocity data were then fitted to a vortex model so that vortex parameters such as circulation, core radius, and trajectory were estimated. Mach number dependence was seen for all parameters. Vortex height and core radius both tended to decrease slightly with increasing Mach number. A critical vane angle for maximum circulation was observed and also decreased with increasing Mach number. Circulation was seen to scale with wall-friction velocity for Mach 1.5 and 1.8 but not 2.5. © 2012 by W.R. Nolan and H. Babinsky.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study on normal hole bleed in a supersonic turbulent boundary layer has been conducted. A combination of LDV, Schlieren imagery and oil flow visualization were used to provide a better understanding of the three-dimensional flow field surrounding a supersonic bleed array. Experiments were performed at Mach numbers of 1.8 and 2.5, while previously published results at Mach numbers of 1.3 and 1.5 were also incorporated. The bleed system was capable of removing up to approximately 10% of the incoming boundary layer through a tunnel-spanning array of discrete holes with diameters the same order of magnitude of boundary layer displacement thickness. Inspection of boundary layer profiles downstream of the bleed region indicates that vorticity generated by the discrete holes can have a substantial influence on changes to the boundary layer shape factor and skin friction coefficient, through modification of the lower 20% of the boundary layer. This vorticity was visualized through oil-flow visualization, and LDV measurements, showing the development of two vortices off each bleed hole, and corresponding upwash and downwash regions with far-reaching three dimensional effects. © 2013 by J. M. Oorebeek and H. Babinsky.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study develops a single-stream jet noise prediction model for a family of chevron nozzles. An original equation is proposed for the fourth-order space-time cross-correlations. They are expressed in flow parameters such as streamwise circulation and turbulent kinetic energy. The cross-correlations based on a Reynolds Averaged Navier-Stokes (RANS) flowfield showed a good agreement with those based on a Large Eddy Simulation (LES) flowfield. This proves that the proposed equation describes the cross-correlations accurately. With this novel source description, there is an excellent agreement between our model's far-field noise predictions and measurements1 for a wide range of frequencies and radiation angles. Our model captures the spectral shape, amplitude and peak frequency very well. This establishes that our model holds good for a family of chevron nozzles. As our model provides quick and accurate predictions, a parametric study was performed to understand the effects of a chevron nozzle geometry on jet noise and thrust loss. Chevron penetration is the underpinning factor for jet noise reduction. The reduction of jet noise per unit thrust loss decreases linearly with chevron penetration. The number of chevrons also has a considerable effect on jet noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct numerical simulation of the shock/turbulent boundary layer interaction flow in a supersonic 24-degree compression ramp is conducted with the free stream Mach number 2.9. The blow-and-suction disturbance in the upstream wall boundary is used to trigger the transition. Both the mean wall pressure and the velocity profiles agree with those of the experimental data, which validates the simulation. The turbulent kinetic energy budget in the separation region is analyzed. Results show that the turbulent production term increases fast in the separation region, while the turbulent dissipation term reaches its peak in the near-wall region. The turbulent transport term contributes to the balance of the turbulent conduction and turbulent dissipation. Based on the analysis of instantaneous pressure in the downstream region of the mean shock and that in the separation bubble, the authors suggest that the low frequency oscillation of the shock is not caused by the upstream turbulent disturbance, but rather the instability of separation bubble.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supersonic model combustors using two-stage injections of supercritical kerosene were experimentally investigated in both Mach 2.5 and 3.0 model combustors with stagnation temperatures of approximately 1,750 K. Supercritical kerosene of approximately 760 K was prepared and injected in the overall equivalence ratio range of 0.5-1.46. Two pairs of integrated injector/flameholder cavity modules in tandem were used to facilitate fuel-air mixing and stable combustion. For single-stage fuel injection at an upstream location, it was found that the boundary layer separation could propagate into the isolator with increasing fuel equivalence ratio due to excessive local heat release, which in turns changed the entry airflow conditions. Moving the fuel injection to a further downstream location could alleviate the problem, while it would result in a decrease in combustion efficiency due to shorter fuel residence time. With two-stage fuel injections the overall combustor performance was shown to be improved and kerosene injections at fuel rich conditions could be reached without the upstream propagation of the boundary layer separation into the isolator. Furthermore, effects of the entry Mach number and pilot hydrogen on combustion performance were also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By analyzing the formation mechanism of a supersonic gas jet, a set of equations which describe the atomic beam properties were established. The influence of initial temperature, initial pressure, background gas pressure and pumping speed was discussed in detail. A simulation program was developed based on the equations, and the results under different initial conditions were obtained. The results are in good agreement with the experimental data, and suggest that, in order to get much smaller transverse momentum in collision experiments, it is necessary to lower the initial temperature and the initial pressure of the supersonic gas jet, together with increasing the pumping speed. These results are very instructive for construction of a new generation of cold supersonic gas jets.