991 resultados para Superposition Operator
Resumo:
In this Letter new aspects of string theory propagating in a pp-wave time dependent background with a null singularity are explored. It is shown the appearance of a 2d entanglement entropy dynamically generated by the background. For asymptotically flat observers, the vacuum close to the singularity is unitarily inequivalent to the vacuum at tau = -infinity and it is shown that the 2d entanglement entropy diverges close to this point. As a consequence. The positive time region is inaccessible for observers in tau = -infinity. For a stationary measure, the vacuum at finite time is seen by those observers as a thermal state and the information loss is encoded as a heat bath of string states. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A time for a quantum particle to traverse a barrier is obtained for stationary states by setting the local value of a time operator equal to a constant. This time operator, called the tempus operator because it is distinct from the time of evolution, is defined as the operator canonically conjugate to the energy operator. The local value of the tempus operator gives a complex time for a particle to traverse a barrier. The method is applied to a particle with a semiclassical wave function, which gives, in the classical limit, the correct classical traversal time. It is also applied to a quantum particle tunneling through a rectangular barrier. The resulting complex tunneling time is compared with complex tunneling times from other methods.
Resumo:
We show that the BRST charge for the N = 2 superstring system can be written as Q = e(-R)(phi dz/2 pi ib gamma(+)gamma(-))e(R), when b and gamma(+/-) are super-reparametrizations ghosts. This provides a trivial proof of the nilpotence of this operator. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work we reexamine quantum electrodynamics of atomic electrons in the Coulomb gauge in the dipole approximation and calculate the shift of atomic energy levels in the context of Dalibard, Dupont-Roc and Cohen-Tannoudji formalism by considering the variation rates of physical observable. We then analyze the physical interpretation of the ordering of operators in the dipole approximation interaction Hamiltonian in terms of field fluctuations and self-reaction of atomic electrons, discussing the arbitrariness in the statistical functions in second-order bound-state perturbation theory. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Various Green functions of the Dirac equation with a magnetic-solenoid field (the superposition of the Aharonov-Bohm field and a collinear uniform magnetic field) are constructed and studied. The problem is considered in 2+1 and 3+1 dimensions for the natural extension of the Dirac operator (the extension obtained from the solenoid regularization). Representations of the Green functions as proper time integrals are derived. The nonrelativistic limit is considered. For the sake of completeness the Green functions of the Klein-Gordon particles are constructed as well. (C) 2004 American Institute of Physics.
Resumo:
We consider the dynamics of a system of interacting spins described by the Ginzburg-Landau Hamiltonian. The method used is Zwanzig's version of the projection-operator method, in contrast to previous derivations in which we used Mori's version of this method. It is proved that both methods produce the same answer for the Green's function. We also make contact between the projection-operator method and critical dynamics.
Resumo:
We study the role of the thachyonic excitation which emerges from the quantum electrodynamics in two dimensions with Podolsky term. The quantization is performed by using path integral framework and the operator approach.
Resumo:
We present an operator formulation of the q-deformed dual string model amplitude using an infinite set of q-harmonic oscillators. The formalism attains the crossing symmetry and factorization and allows to express the general n-point function as a factorized product of vertices and propagators.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-known q-deformed commutation relation is shown to emerge in a natural way, when the deformation parameter is a root of unity.
Resumo:
We write the BRST operator of the N = 1 superstring as, Q = e-R(1/2πiφdzγ2b)eR where y and b are super-reparameterization ghosts. This provides a trivial proof that Q is nilpotent. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Using the pure spinor formalism for the superstring, the vertex operator for the first massive states of the open superstring is constructed in a manifestly super-Poincaré covariant manner. This vertex operator describes a massive spin-two multiplet in terms of ten-dimensional superfields. © SISSA/ISAS 2002.
Resumo:
Since the 1980s, huge efforts have been made to utilise renewable energy sources to generate electric power. One of the interesting issues about embedded generators is the question of optimal placement and sizing of the embedded generators. This paper reports an investigation of impact of the integration of embedded generators on the overall performances of the distribution networks in the steady state, using theorem of superposition. Set of distribution system indices is proposed to observe performances of the distribution networks with embedded generators. Results obtained from the case study using IEEE test network are presented and discussed.
Resumo:
In the study of the Type II superstring, it is useful to consider the BRST complex associated to the sum of two pure spinors. The cohomology of this complex is an infinite-dimensional vector space. It is also a finite-dimensional algebra over the algebra of functions of a single pure spinor. In this paper we study the multiplicative structure. © 2013 World Scientific Publishing Company.
Resumo:
Includes bibliography