900 resultados para Super explotação
Resumo:
Within the dinuclear system (DNS) conception, instead of solving the Fokker-Planck equation (FPE) analytically, the master equation is solved numerically to calculate the fusion probability of super-heavy nuclei, so that the harmonic oscillator approximation to the potential energy of the DNS is avoided. The relative motion concerning the energy, the angular momentum and the fragment deformation relaxations is explicitly treated to couple with the diffusion process. The nucleon transition probabilities, which are derived microscopically, are related with the energy dissipation of the relative motion. Thus they are time dependent. Comparing with the analytical solution of FPE at the equilibrium, our time-dependent results preserve more dynamical effects. The calculated evaporation residue cross-sections for one-neutron emission channel of Pb-based reactions are basically in agreement with the known experimental data within one order of magnitude.
Resumo:
国际反质子与离子大科学工程(FAIR)项目是一个大型的国际合作项目,其中Super-FRS超导二极磁体由中国科学院近代物理研究所研制。利用ADINA有限元程序对项目中的超导Super-FRS磁体线圈的失超过程进行了模拟分析。利用C程序对ADINA程序进行二次开发以便对有限元求解器的调用和载荷的控制。分析结果显示:在失超过程中产生的最大热应力为26 MPa,可能产生的声波频率在35 Hz左右。
Resumo:
介绍了Super-FRS超导二极磁铁的磁场优化和端部削斜方案,采用OPERA软件对活极头进行削斜计算,得出合理的活极头尺寸,使各场下的积分均匀度在要求范围内达到了±2×10-4。最后将计算的积分场均匀度与磁场测量的结果进行比较,结果吻合得较好,验证了这种端部活极头优化计算方法的正确性。
Resumo:
The FAIR China Group (FCG), consisting of the Institute of Modern Physics (IMP Lanzhou), the Institute of Plasma Physics (ASIPP, Hefei) and the Institute of Electric Engineering (IEE, Beijing) developed and manufactured in cooperation with GSI, Germany a prototype of a superferric dipole for the Super-Fragment-Separator of the FAIR-project [1]. The dipole magnets of the separator will have a deflection radius of 12.5 m, a field up to 1.6 T, a gap of at least 170 mm and an effective length of more than 2 meters to bend ion beams with a rigidity from 2 T . m up to 20 T . m. The magnets operate at DC mode. These requirements led to a superferric design with a yoke weight of more than 50 tons and a maximum stored energy of more than 400 kJ. The principles of yoke, coil and cryostat construction will be presented. We will also show first results of tests and measurements realized at ASIPP and at IMP.
Resumo:
The Super-FRS (Super FRagment Separator) is a part of FAIR (Facility for Antiproton and Ion Research), which will be constructed at GSI, Germany by 17 countries. The Super-FRS comprises 24 superferric dipole magnets. The 2D and 3D magnetic field simulations of the prototype magnet are described in this paper. A passive trim slot and four chamfered removable poles are used to satisfy the required field homogeneity which is better than +/-3 x 10(-4) at 1.6 T, 0.8 T and 0.16 T in a wide elliptical useable aperture of 380 mm x 140 mm. Measurement results at various field levels are shown in this paper as well. It can be seen from the comparison of calculation and measurement results that the magnetic designs of the magnet fulfils the requirements.
Resumo:
中国签订了为德国FAIR国际大科学工程加工SUPER-FRS/CR超导二极磁铁样机的合作备忘录。该超导二极磁铁属于常温铁芯、低温线圈的超导磁铁,该磁铁的磁场强度0.15~1.6T,偏转角度15°,偏转半径8125mm,磁场精度要求±1×10-4,磁铁总重量约50吨。磁铁铁芯采用0.5mm的硅钢片叠压成型,由中科院近代物理研究(IMP)所计算、设计制造,线圈采用4.2K液氦浸泡式超导线圈,由合肥等离子体所设计制造(IPP)。 超导磁体的力学性能分析一直是超导磁体的基础问题。本文利用有限元分析方法,借助有限分析工具ANSYS、ADINA、OPERA等,分析了超导磁体的电磁场,着重模拟计算了SUPER-FRS/CR超导二极磁铁的电磁力作用;模拟了降温过程,计算了杜瓦、线圈热应力的作用;并对SUPER-FRS/CR超导线圈进行地震载荷作用的模拟。对以上不同的受力作用所遵循的不同的机械设计准则,进行不同的分析,最后计算结果证明设计的结构是安全、可靠的。由于超导线圈的结构复杂,导致在线圈拐角的地方应力有些集中,但是并不影响结构的可靠性。 本文还介绍了超导实验线圈的一些工艺设计,例如超导线圈的绕制,低温材料的选择,电流引线的设计工艺,以及VPI工艺。并对实验磁体进行了一系列的低温性能测试,例如短样测试、降温实验等,获得了一些重要的低温实验参数。这些参数将为以后超导磁体的研制提供宝贵的依据
Resumo:
Neighbor embedding algorithm has been widely used in example-based super-resolution reconstruction from a single frame, which makes the assumption that neighbor patches embedded are contained in a single manifold. However, it is not always true for complicated texture structure. In this paper, we believe that textures may be contained in multiple manifolds, corresponding to classes. Under this assumption, we present a novel example-based image super-resolution reconstruction algorithm with clustering and supervised neighbor embedding (CSNE). First, a class predictor for low-resolution (LR) patches is learnt by an unsupervised Gaussian mixture model. Then by utilizing class label information of each patch, a supervised neighbor embedding is used to estimate high-resolution (HR) patches corresponding to LR patches. The experimental results show that the proposed method can achieve a better recovery of LR comparing with other simple schemes using neighbor embedding.
Resumo:
Super-hydrophobic films with vinyl-modified silica nanoparticles (V-SiOx-NPs) were successfully prepared. The rough surface, which was composed of microstructures of disordered V-SiOx-NPs and nanostructures on the surface of V-SiOx-NPs, rather than the chemical composition devoted to the super-hydrophobicity of film. The relationship between contact angle and diameter of V-SiOx-NPs was then investigated. The sessile contact angles (CA) of films with 150-1600nm V-SiOx-NPs were around 166 regardless the diameter, while the film with 85 nm V-SiOx-NPs had the lowest CA of about 158. The packing manner of V-SiOx-NPs determined the air fraction on the surface and then the CA.
Resumo:
A super-hydrophobic surface was obtained on a three-dimensional (313) polyvinylidene fluoride (PVDF) macroporous film. The porous films were fabricated through self-assembled silica colloidal templates. The apparent water contact angle of the surface can be tuned from 106 degrees to 153 degrees through altering the sintering temperature and the diameter of the colloidal templates. A composite structure of micro-cavities and nanoholes on the PVDF surface was responsible for the super-hydrophobicity. The wettability of the porous surfaces was described by the use of the Cassie-Baxter model and Wenzel's equation.
Resumo:
The surface of superground Mn-Zn ferrite single crystal may be identified as a self-affine fractal in the stochastic sense. The rms roughness increased as a power of the scale from 10(2) nm to 10(6) nm with the roughness exponent alpha = 0.17 +/- 0.04, and 0.11 +/- 0.06, for grinding feed rate of 15 and 10 mu m/rev, respectively. The scaling behavior coincided with the theory prediction well used for growing self-affine surfaces in the interested region for magnetic heads performance. The rms roughnesses increased with increase in the feed rate, implying that the feed rate is a crucial grinding parameter affecting the supersmooth surface roughness in the machining process.
Resumo:
Window design plays an important role in achieving energy efficient buildings and in providing thermal comfort of building occupants. This paper investigates a newly developed aerogel window and the potential improvement on the comfort factors of an office in relation to daylighting. Improved comfort levels can impact on health and wellbeing of building occupants leading to knock on effects on absenteeism and productivity. A simulation tool was presently created that will easily enable comparison of different façade design and their impact on heat and light transmission and therefore enable optimisation. One of the most important aspects of the present work was comparing the performance of the newly developed aerogel window against the more traditional Argon-filled, coated double-glazing. Whereas the aerogel window provided an extremely low heat-loss index of 0.3 W/m2K, the latter usually offered a centre-glazing U-value of 1.4 W/m2K. On a like-with-like basis the daylight transmission of the aerogel window was significantly lower than double-glazing. However, in view of low thermal loss larger areas of the former can be deployed. This article presents the influence of three key parameters that may lead to an optimum design: daylight, thermal loss and solar gain.