988 resultados para Sun: magnetic fields


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have developed a differential scanning calorimeter capable of working under applied magnetic fields of up to 5 T. The calorimeter is highly sensitive and operates over the temperature range 10300 K. It is shown that, after a proper calibration, the system enables determination of the latent heat and entropy changes in first-order solidsolid phase transitions. The system is particularly useful for investigating materials that exhibit the giant magnetocaloric effect arising from a magnetostructural phase transition. Data for Gd5(Si0.1Ge0.9)4 are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Meissner and diamagnetic shielding effects and the upper, lower, and thermodynamical critical fields have been studied in a Ba2HoCu3O7-x sample using magnetization measurements in fields up to 55 kOe. The diamagnetic shielding curve shows the existence of a transition at Tc=91.5 K followed by a broad transition extending from 85 to 25 K which may be related to inhomogeneities in the oxygen content of the sample. A rather low flux expulsion (13.5%) is observed which we attribute to flux pinning or trapping. We show that the coexistence of superconducting and nonsuperconducting regions within the sample at temperatures just below Tc leads to strong reductions in the critical magnetic fields.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Different vortex penetration regimes have been registered in the output voltage signal of a magnetometer when single microwave pulses are applied to an epitaxial overdoped La2 x Sr x CuO4 thin film in a perpendicular dc magnetic field. The onset of a significant variation in the sample magnetization which exists below threshold values of temperature, dc magnetic field, and pulse duration is interpreted as an avalanche-type flux penetration. The microwave contribution to the background electric field suggests that the nucleation of this fast vortex motion is of electric origin, which also guarantees the occurrence of vortex instabilities under adiabatic conditions via the enhancement of the flux flow resistivity. Flux creep phenomena and heat transfer effects act as stabilizing factors against the microwave-pulse-induced fast flux diffusion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The probability for a halo coronal mass ejection (CME) to be geoeffective is assumed to be higher the closer the CME launch site is located to the solar central meridian. However, events far from the central meridian may produce severe geomagnetic storms, like the case in April 2000. In this work, we study the possible geoeffectiveness of full halo CMEs with the source region situated at solar limb. For this task, we select all limb full halo (LFH) CMEs that occurred during solar cycle 23, and we search for signatures of geoeffectiveness between 1 and 5 days after the first appearance of each CME in the LASCO C2 field of view. When signatures of geomagnetic activity are observed in the selected time window, interplanetary data are carefully analyzed in order to look for the cause of the geomagnetic disturbance. Finally, a possible association between geoeffective interplanetary signatures and every LFH CME in solar cycle 23 is checked in order to decide on the CME's geoeffectiveness. After a detailed analysis of solar, interplanetary, and geomagnetic data, we conclude that of the 25 investigated events, there are only four geoeffective LFH CMEs, all coming from the west limb. The geoeffectiveness of these events seems to be moderate, turning to intense in two of them as a result of cumulative effects from previous mass ejections. We conclude that ejections from solar locations close to the west limb should be considered in space weather, at least as sources of moderate disturbances.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review covers some of the contributions to date from cerebellar imaging studies performed at ultra-high magnetic fields. A short overview of the general advantages and drawbacks of the use of such high field systems for imaging is given. One of the biggest advantages of imaging at high magnetic fields is the improved spatial resolution, achievable thanks to the increased available signal-to-noise ratio. This high spatial resolution better matches the dimensions of the cerebellar substructures, allowing a better definition of such structures in the images. The implications of the use of high field systems is discussed for several imaging sequences and image contrast mechanisms. This review covers studies which were performed in vivo in both rodents and humans, with a special focus on studies that were directed towards the observation of the different cerebellar layers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, the magnetic field control of convection instabilities and heat and mass transfer processesin magnetic fluids have been investigated by numerical simulations and theoretical considerations. Simulation models based on finite element and finite volume methods have been developed. In addition to standard conservation equations, themagnetic field inside the simulation domain is calculated from Maxwell equations and the necessary terms to take into account for the magnetic body force and magnetic dissipation have been added to the equations governing the fluid motion.Numerical simulations of magnetic fluid convection near the threshold supportedexperimental observations qualitatively. Near the onset of convection the competitive action of thermal and concentration density gradients leads to mostly spatiotemporally chaotic convection with oscillatory and travelling wave regimes, previously observed in binary mixtures and nematic liquid crystals. In many applications of magnetic fluids, the heat and mass transfer processes including the effects of external magnetic fields are of great importance. In addition to magnetic fluids, the concepts and the simulation models used in this study may be applied also to the studies of convective instabilities in ordinary fluids as well as in other binary mixtures and complex fluids.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a sample of three large near-relativistic (>50 keV) electron events observed in 2001 by both the ACE and the Ulysses spacecraft, when Ulysses was at high-northern latitudes (>60) and close to 2 AU. Despite the large latitudinal distance between the two spacecraft, electrons injected near the Sun reached both heliospheric locations. All three events were associated with large solar flares, strong decametric type II radio bursts and accompanied by wide (>212) and fast (>1400 km s1) coronal mass ejections (CMEs). We use advanced interplanetary transport simulations and make use of the directional intensities observed in situ by the spacecraft to infer the electron injection profile close to the Sun and the interplanetary transport conditions at both low and high latitudes. For the three selected events, we find similar interplanetary transport conditions at different heliolatitudes for a given event, with values of the mean free path ranging from 0.04 AU to 0.27 AU. We find differences in the injection profiles inferred for each spacecraft. We investigate the role that sector boundaries of the heliospheric current sheet (HCS) have on determining the characteristics of the electron injection profiles. Extended injection profiles, associated with coronal shocks, are found if the magnetic footpoints of the spacecraft lay in the same magnetic sector as the associated flare, while intermittent sparse injection episodes appear when the spacecraft footpoints are in the opposite sector or a wrap in the HCS bounded the CME structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Very fast magnetic avalanches in (La, Pr)-based manganites are the signature of a phase transition from an insulating blocked charge-ordered antiferromagnetic state to a charge-delocalized ferromagnetic (CD-FM) state. We report here the experimental observation that this transition does not occur either simultaneously or randomly in the whole sample but there is instead a spatial propagation with a velocity of the order of tens of m/s. Our results show that avalanches originate from the inside of the sample, move to the outside, and occur at values of the applied magnetic field that depend on the CD-FM fraction in the sample. Moreover, upon application of surface acoustic waves at constant magnetic fields, we are able to trigger avalanches at very well-determined values of the temperature and magnetic field. Due to the interaction with the acoustic waves, the number of isolated ferromagnetic clusters in La0.225Pr0.40Ca0.375MnO3 starts to grow across the entire sample in the same way as if it were a magnetic deflagration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis three experiments with atomic hydrogen (H) at low temperatures T<1 K are presented. Experiments were carried out with two- (2D) and three-dimensional (3D) H gas, and with H atoms trapped in solid H2 matrix. The main focus of this work is on interatomic interactions, which have certain specific features in these three systems considered. A common feature is the very high density of atomic hydrogen, the systems are close to quantum degeneracy. Short range interactions in collisions between atoms are important in gaseous H. The system of H in H<sub>2</sub> differ dramatically because atoms remain fixed in the H<sub>2</sub> lattice and properties are governed by long-range interactions with the solid matrix and with H atoms. The main tools in our studies were the methods of magnetic resonance, with electron spin resonance (ESR) at 128 GHz being used as the principal detection method. For the first time in experiments with H in high magnetic fields and at low temperatures we combined ESR and NMR to perform electron-nuclear double resonance (ENDOR) as well as coherent two-photon spectroscopy. This allowed to distinguish between different types of interactions in the magnetic resonance spectra. Experiments with 2D H gas utilized the thermal compression method in homogeneous magnetic field, developed in our laboratory. In this work methods were developed for direct studies of 3D H at high density, and for creating high density samples of H in H<sub>2</sub>. We measured magnetic resonance line shifts due to collisions in the 2D and 3D H gases. First we observed that the cold collision shift in 2D H gas composed of atoms in a single hyperfine state is much smaller than predicted by the mean-field theory. This motivated us to carry out similar experiments with 3D H. In 3D H the cold collision shift was found to be an order of magnitude smaller for atoms in a single hyperfine state than that for a mixture of atoms in two different hyperfine states. The collisional shifts were found to be in fair agreement with the theory, which takes into account symmetrization of the wave functions of the colliding atoms. The origin of the small shift in the 2D H composed of single hyperfine state atoms is not yet understood. The measurement of the shift in 3D H provides experimental determination for the difference of the scattering lengths of ground state atoms. The experiment with H atoms captured in H2 matrix at temperatures below 1 K originated from our work with H gas. We found out that samples of H in H2 were formed during recombination of gas phase H, enabling sample preparation at temperatures below 0.5 K. Alternatively, we created the samples by electron impact dissociation of H<sub>2</sub> molecules in situ in the solid. By the latter method we reached highest densities of H atoms reported so far, 3.5(5)x10<sup>19</sup> cm<sup>-3</sup>. The H atoms were found to be stable for weeks at temperatures below 0.5 K. The observation of dipolar interaction effects provides a verification for the density measurement. Our results point to two different sites for H atoms in H2 lattice. The steady-state nuclear polarizations of the atoms were found to be non-thermal. The possibility for further increase of the impurity H density is considered. At higher densities and lower temperatures it might be possible to observe phenomena related to quantum degeneracy in solid.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interest to hole-doped mixed-valence manganite perovskites is connected to the colossal magnetoresistance. This effect or huge drop of the resistivity, , in external magnetic field, B, attains usually the maximum value near the ferromagnetic Curie temperature, TC. In this thesis are investigated conductivity mechanisms and magnetic properties of the manganite perovskite compounds LaMnO3+, La1-xCaxMnO3, La1-xCaxMn1-yFeyO3 and La1- xSrxMn1-yFeyO3. When the present work was started the key role of the phase separation and its influence on the properties of the colossal magnetoresistive materials were not clear. Our main results are based on temperature dependencies of the magnetoresistance and magnetothermopower, investigated in the temperature interval of 4.2 - 300 K in magnetic fields up to 10 T. The magnetization was studied in the same temperature range in weak (up to 0.1 T) magnetic fields. LaMnO3+ is the parent compound for preparation of the hole-doped CMR materials. The dependences of such parameters as the Curie temperature, TC, the Coulomb gap, , the rigid gap, , and the localization radius, a, on pressure, p, are observed in LaMnO3+. It has been established that the dependences above can be interpreted by increase of the electron bandwidth and decrease of the polaron potential well when p is increased. Generally, pressure stimulates delocalization of the electrons in LaMnO3+. Doping of LaMnO3 with Ca, leading to La1-xCaxMnO3, changes the Mn3+/Mn4+ ratio significantly and brings an additional disorder to the crystal lattice. Phase separation in a form of mixture of the ferromagnetic and the spin glass phases was observed and investigated in La1- xCaxMnO3 at x between 0 and 0.4. Influence of the replacement of Mn by Fe is studied in La0.7Ca0.3Mn1yFeyO3 and La0.7Sr0.3Mn1yFeyO3. Asymmetry of the soft Coulomb gap and of the rigid gap in the density of localized states, small shift of the centre of the gaps with respect to the Fermi level and cubic asymmetry of the density of states are obtained in La0.7Ca0.3Mn1yFeyO3. Damping of TC with y is connected to breaking of the double-exchange interaction by doping with Fe, whereas the irreversibility and the critical behavior of the magnetic susceptibility are determined by the phase separation and the frustrated magnetic state of La0.7Sr0.3Mn1yFeyO3.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As it is known, the major problem of membrane filtration is fouling of membrane during the filtration process. There are a lot of methods to prevent or reduce fouling. One very little studied method is applying of magnetic field in membrane filtration. Magnetic field has such advantages as bulk, contact free, nondestructive impact on the sample, thus it can be combined with different types of processes. In addition, the use of magnetic fields has given positive results in various areas of science and life. So, the present thesis is devoted to the research of influence of magnetic field on performances of nanofiltration. In the literature part of the thesis a short description of membrane process and mechanism of reorientation of nanoparticals in magnetic field is presented. The utilization of magnetic field in different spheres of life, in general, and membrane area, in particular, is represented. In the experimental part the influence of magnetic field created by two permanent magnets on filtration of two solutions (citric acid and sodium dodecyl sulfate) was investigated. Factors, which affect on the impact of magnetic field was estimated. The effect of magnetic field was evaluated by measuring a change of pure water permeability after the filtration of model solution. This work demonstrated that direction of magnetic field and the type of molecules of filtered solution has significant effect to the efficiency of nanofiltration. Utilization of magnetic field might increase retention of membrane and flux through membrane and reduce fouling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis summarizes studies of a class of white dwarfs (WDs) called DQ WDs. White dwarfs are the remnants of ordinary stars like our Sun that have run out of nuclear fuel. WDs are classified according to the composition of their atmosphere and DQ WDs have an atmosphere made of helium and carbon. The carbon comes in either atomic or molecular form and in some cases the strong spectral absorption features cover the entire optical wavelength region. The research presented here utilizes spectropolarimetry, which is an observational technique that combines spectroscopy and polarization. Separately these allow to study the composition of a target and the inhomogeneous distribution of matter in the target. Put together they form a powerful tool to probe the physical properties in the atmosphere of a star. It is espacially good for detecting magnetic fields. The papers in this thesis describe efforts to do a survey of DQ white dwarfs with spectropolarimetry in order to search for magnetic fields in them. Paper I describes the discovery of a new magnetic cool DQ white dwarf, GJ841B. Initial modeling of molecular features on DQ WDs showed inconsistencies with observations. The first possible solution to this problem was stellar spots on these WDs. To investigate the matter, two DQ WDs were monitored for photometric variability that could arise from the presence of such spots. Paper II summarizes this short campaign and reports the negative results. Paper III reports observations of the rest of the objects in our survey. The paper includes the discovery of polarization from another cool DQ white dwarf, bringing the total of known magnetic cool DQs to three. Unfortunately the model used in this thesis cannot, in its present state, be used to model these objects nor are the observations of high enough spectroscopic resolution to do so.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High magnetic fields and extremely low temperatures are essential in the study of new semiconductor materials for example in the field of spintronics. Typical phenomenons that arise in such conditions are: Hall Effect, Anomalous Hall effect and Shubnikov de-Haas effect. In this thesis a device capable for such conditions was described. A strong magnetic field pulse generator situated in the laboratory of physics and the Lappeenranta University of Technology was studied. The device is introduced in three parts. First one is the pulsed field magnetic generator, which is responsible for generating the high magnetic field. Next one is the measurement systems, which are responsible for monitoring the sample and the system itself. The last part describes the cryostat system, which allows the extremely cold temperatures in the system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nous analysons les oscillations torsionnelles se dveloppant dans une simulation magntohydrodynamique de la zone de convection solaire produisant des champs magntiques de type solaire (champs axisymtriques subissant des inversions de polarits rgulires sur des chelles temporelles dcadaires). Puisque ces oscillations sont galement similaires celles observes dans le Soleil, nous analysons les dynamiques zonales aux grandes chelles. Nous sparons donc les termes aux grandes chelles (force de Coriolis exerce sur la circulation mridienne et les champs magntiques aux grandes chelles) de ceux aux petites chelles (les stress de Reynolds et de Maxwell). En comparant les flux de moments cintiques entre chacune des composantes, nous nous apercevons que les oscillations torsionnelles sont maintenues par lcoulement mridien aux grandes chelles, lui mme modul par les champs magntiques. Une analyse dchange dnergie confirme ce rsultat, puisquelle montre que seul le terme comprenant la force de Coriolis injecte de lnergie dans lcoulement. Une analyse de la dynamique rotationnelle ayant lieu la limite de la zone stable et de la zone de convection dmontre que celle-ci est fortement modifie lors du passage de la base des couches convectives la base de la fine tachocline sy formant juste en-dessous. Nous concluons par une discussion au niveau du mcanisme de saturation en amplitude dans la dynamo soprant dans la simulation ainsi que de la possibilit dutiliser les oscillations torsionnelles comme prcurseurs aux cycles solaires venir.