935 resultados para Sufficient conditions
Resumo:
Published as an article in: American Economic Review, 2010, vol. 100, issue 4, pages 1601-15.
Resumo:
The purpose of this article is to characterize dynamic optimal harvesting trajectories that maximize discounted utility assuming an age-structured population model, in the same line as Tahvonen (2009). The main novelty of our study is that uses as an age-structured population model the standard stochastic cohort framework applied in Virtual Population Analysis for fish stock assessment. This allows us to compare optimal harvesting in a discounted economic context with standard reference points used by fisheries agencies for long term management plans (e.g. Fmsy). Our main findings are the following. First, optimal steady state is characterized and sufficient conditions that guarantees its existence and uniqueness for the general case of n cohorts are shown. It is also proved that the optimal steady state coincides with the traditional target Fmsy when the utility function to be maximized is the yield and the discount rate is zero. Second, an algorithm to calculate the optimal path that easily drives the resource to the steady state is developed. And third, the algorithm is applied to the Northern Stock of hake. Results show that management plans based exclusively on traditional reference targets as Fmsy may drive fishery economic results far from the optimal.
Resumo:
讨论了单参数连续流的基本性质,并给出了关于单参数连续流为极小流和单参数连续半流为极小流的充分条件。
Resumo:
We analyze the effects of capital income taxation on long-run growth in a stochastic, two-period overlapping generations economy. Endogenous growth is driven by a positive externality of physical capital in the production sector that makes firms exhibit an aggregate technology in equilibrium. We distinguish between capital income and labor income, and between attitudes towards risk and intertemporal substitution of consumption. We show necessary and sufficient conditions such that i) increments in the capital income taxation lead to higher equilibrium growth rates, and ii) the effect of changes in the capital income tax rate on the equilibrium growth may be of opposite signs in stochastic and in deterministic economies. Such a sign reversal is shown to be more likely depending on i) how the intertemporal elasticity of substitution compares to one, and ii) the size of second- period labor supply. Numerical simulations show that for reasonable values of the intertemporal elasticity of substitution, a sign reversal shows up only for implausibly high values of the second- period’s labor supply. The conclusion is that deterministic OLG economies are a good approximation of the effect of taxes on the equilibrium growth rate as in Smith (1996).
Resumo:
The problem of the existence and stability of periodic solutions of infinite-lag integra-differential equations is considered. Specifically, the integrals involved are of the convolution type with the dependent variable being integrated over the range (- ∞,t), as occur in models of population growth. It is shown that Hopf bifurcation of periodic solutions from a steady state can occur, when a pair of eigenvalues crosses the imaginary axis. Also considered is the existence of traveling wave solutions of a model population equation allowing spatial diffusion in addition to the usual temporal variation. Lastly, the stability of the periodic solutions resulting from Hopf bifurcation is determined with aid of a Floquet theory.
The first chapter is devoted to linear integro-differential equations with constant coefficients utilizing the method of semi-groups of operators. The second chapter analyzes the Hopf bifurcation providing an existence theorem. Also, the two-timing perturbation procedure is applied to construct the periodic solutions. The third chapter uses two-timing to obtain traveling wave solutions of the diffusive model, as well as providing an existence theorem. The fourth chapter develops a Floquet theory for linear integro-differential equations with periodic coefficients again using the semi-group approach. The fifth chapter gives sufficient conditions for the stability or instability of a periodic solution in terms of the linearization of the equations. These results are then applied to the Hopf bifurcation problem and to a certain population equation modeling periodically fluctuating environments to deduce the stability of the corresponding periodic solutions.
Resumo:
In this study we investigate the existence, uniqueness and asymptotic stability of solutions of a class of nonlinear integral equations which are representations for some time dependent non- linear partial differential equations. Sufficient conditions are established which allow one to infer the stability of the nonlinear equations from the stability of the linearized equations. Improved estimates of the domain of stability are obtained using a Liapunov Functional approach. These results are applied to some nonlinear partial differential equations governing the behavior of nonlinear continuous dynamical systems.
Resumo:
The general theory of Whitham for slowly-varying non-linear wavetrains is extended to the case where some of the defining partial differential equations cannot be put into conservation form. Typical examples are considered in plasma dynamics and water waves in which the lack of a conservation form is due to dissipation; an additional non-conservative element, the presence of an external force, is treated for the plasma dynamics example. Certain numerical solutions of the water waves problem (the Korteweg-de Vries equation with dissipation) are considered and compared with perturbation expansions about the linearized solution; it is found that the first correction term in the perturbation expansion is an excellent qualitative indicator of the deviation of the dissipative decay rate from linearity.
A method for deriving necessary and sufficient conditions for the existence of a general uniform wavetrain solution is presented and illustrated in the plasma dynamics problem. Peaking of the plasma wave is demonstrated, and it is shown that the necessary and sufficient existence conditions are essentially equivalent to the statement that no wave may have an amplitude larger than the peaked wave.
A new type of fully non-linear stability criterion is developed for the plasma uniform wavetrain. It is shown explicitly that this wavetrain is stable in the near-linear limit. The nature of this new type of stability is discussed.
Steady shock solutions are also considered. By a quite general method, it is demonstrated that the plasma equations studied here have no steady shock solutions whatsoever. A special type of steady shock is proposed, in which a uniform wavetrain joins across a jump discontinuity to a constant state. Such shocks may indeed exist for the Korteweg-de Vries equation, but are barred from the plasma problem because entropy would decrease across the shock front.
Finally, a way of including the Landau damping mechanism in the plasma equations is given. It involves putting in a dissipation term of convolution integral form, and parallels a similar approach of Whitham in water wave theory. An important application of this would be towards resolving long-standing difficulties about the "collisionless" shock.
Resumo:
The theory of bifurcation of solutions to two-point boundary value problems is developed for a system of nonlinear first order ordinary differential equations in which the bifurcation parameter is allowed to appear nonlinearly. An iteration method is used to establish necessary and sufficient conditions for bifurcation and to construct a unique bifurcated branch in a neighborhood of a bifurcation point which is a simple eigenvalue of the linearized problem. The problem of bifurcation at a degenerate eigenvalue of the linearized problem is reduced to that of solving a system of algebraic equations. Cases with no bifurcation and with multiple bifurcation at a degenerate eigenvalue are considered.
The iteration method employed is shown to generate approximate solutions which contain those obtained by formal perturbation theory. Thus the formal perturbation solutions are rigorously justified. A theory of continuation of a solution branch out of the neighborhood of its bifurcation point is presented. Several generalizations and extensions of the theory to other types of problems, such as systems of partial differential equations, are described.
The theory is applied to the problem of the axisymmetric buckling of thin spherical shells. Results are obtained which confirm recent numerical computations.
Resumo:
We consider the following singularly perturbed linear two-point boundary-value problem:
Ly(x) ≡ Ω(ε)D_xy(x) - A(x,ε)y(x) = f(x,ε) 0≤x≤1 (1a)
By ≡ L(ε)y(0) + R(ε)y(1) = g(ε) ε → 0^+ (1b)
Here Ω(ε) is a diagonal matrix whose first m diagonal elements are 1 and last m elements are ε. Aside from reasonable continuity conditions placed on A, L, R, f, g, we assume the lower right mxm principle submatrix of A has no eigenvalues whose real part is zero. Under these assumptions a constructive technique is used to derive sufficient conditions for the existence of a unique solution of (1). These sufficient conditions are used to define when (1) is a regular problem. It is then shown that as ε → 0^+ the solution of a regular problem exists and converges on every closed subinterval of (0,1) to a solution of the reduced problem. The reduced problem consists of the differential equation obtained by formally setting ε equal to zero in (1a) and initial conditions obtained from the boundary conditions (1b). Several examples of regular problems are also considered.
A similar technique is used to derive the properties of the solution of a particular difference scheme used to approximate (1). Under restrictions on the boundary conditions (1b) it is shown that for the stepsize much larger than ε the solution of the difference scheme, when applied to a regular problem, accurately represents the solution of the reduced problem.
Furthermore, the existence of a similarity transformation which block diagonalizes a matrix is presented as well as exponential bounds on certain fundamental solution matrices associated with the problem (1).
Resumo:
The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.
Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.
Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.
Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.
Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.
Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.
Resumo:
This thesis is comprised of three chapters, each of which is concerned with properties of allocational mechanisms which include voting procedures as part of their operation. The theme of interaction between economic and political forces recurs in the three chapters, as described below.
Chapter One demonstrates existence of a non-controlling interest shareholders' equilibrium for a stylized one-period stock market economy with fewer securities than states of the world. The economy has two decision mechanisms: Owners vote to change firms' production plans across states, fixing shareholdings; and individuals trade shares and the current production / consumption good, fixing production plans. A shareholders' equilibrium is a production plan profile, and a shares / current good allocation stable for both mechanisms. In equilibrium, no (Kramer direction-restricted) plan revision is supported by a share-weighted majority, and there exists no Pareto superior reallocation.
Chapter Two addresses efficient management of stationary-site, fixed-budget, partisan voter registration drives. Sufficient conditions obtain for unique optimal registrar deployment within contested districts. Each census tract is assigned an expected net plurality return to registration investment index, computed from estimates of registration, partisanship, and turnout. Optimum registration intensity is a logarithmic transformation of a tract's index. These conditions are tested using a merged data set including both census variables and Los Angeles County Registrar data from several 1984 Assembly registration drives. Marginal registration spending benefits, registrar compensation, and the general campaign problem are also discussed.
The last chapter considers social decision procedures at a higher level of abstraction. Chapter Three analyzes the structure of decisive coalition families, given a quasitransitive-valued social decision procedure satisfying the universal domain and ITA axioms. By identifying those alternatives X* ⊆ X on which the Pareto principle fails, imposition in the social ranking is characterized. Every coaliton is weakly decisive for X* over X~X*, and weakly antidecisive for X~X* over X*; therefore, alternatives in X~X* are never socially ranked above X*. Repeated filtering of alternatives causing Pareto failure shows states in X^n*~X^((n+1))* are never socially ranked above X^((n+1))*. Limiting results of iterated application of the *-operator are also discussed.
Resumo:
27 p.
Resumo:
Sufficient conditions are derived for the validity of approximate periodic solutions of a class of second order ordinary nonlinear differential equations. An approximate solution is defined to be valid if an exact solution exists in a neighborhood of the approximation.
Two classes of validity criteria are developed. Existence is obtained using the contraction mapping principle in one case, and the Schauder-Leray fixed point theorem in the other. Both classes of validity criteria make use of symmetry properties of periodic functions, and both classes yield an upper bound on a norm of the difference between the approximate and exact solution. This bound is used in a procedure which establishes sufficient stability conditions for the approximated solution.
Application to a system with piecewise linear restoring force (bilinear system) reveals that the approximate solution obtained by the method of averaging is valid away from regions where the response exhibits vertical tangents. A narrow instability region is obtained near one-half the natural frequency of the equivalent linear system. Sufficient conditions for the validity of resonant solutions are also derived, and two term harmonic balance approximate solutions which exhibit ultraharmonic and subharmonic resonances are studied.
Resumo:
The propagation of waves in an extended, irregular medium is studied under the "quasi-optics" and the "Markov random process" approximations. Under these assumptions, a Fokker-Planck equation satisfied by the characteristic functional of the random wave field is derived. A complete set of the moment equations with different transverse coordinates and different wavenumbers is then obtained from the characteristic functional. The derivation does not require Gaussian statistics of the random medium and the result can be applied to the time-dependent problem. We then solve the moment equations for the phase correlation function, angular broadening, temporal pulse smearing, intensity correlation function, and the probability distribution of the random waves. The necessary and sufficient conditions for strong scintillation are also given.
We also consider the problem of diffraction of waves by a random, phase-changing screen. The intensity correlation function is solved in the whole Fresnel diffraction region and the temporal pulse broadening function is derived rigorously from the wave equation.
The method of smooth perturbations is applied to interplanetary scintillations. We formulate and calculate the effects of the solar-wind velocity fluctuations on the observed intensity power spectrum and on the ratio of the observed "pattern" velocity and the true velocity of the solar wind in the three-dimensional spherical model. The r.m.s. solar-wind velocity fluctuations are found to be ~200 km/sec in the region about 20 solar radii from the Sun.
We then interpret the observed interstellar scintillation data using the theories derived under the Markov approximation, which are also valid for the strong scintillation. We find that the Kolmogorov power-law spectrum with an outer scale of 10 to 100 pc fits the scintillation data and that the ambient averaged electron density in the interstellar medium is about 0.025 cm-3. It is also found that there exists a region of strong electron density fluctuation with thickness ~10 pc and mean electron density ~7 cm-3 between the PSR 0833-45 pulsar and the earth.
Resumo:
In 1964 A. W. Goldie [1] posed the problem of determining all rings with identity and minimal condition on left ideals which are faithfully represented on the right side of their left socle. Goldie showed that such a ring which is indecomposable and in which the left and right principal indecomposable ideals have, respectively, unique left and unique right composition series is a complete blocked triangular matrix ring over a skewfield. The general problem suggested above is very difficult. We obtain results under certain natural restrictions which are much weaker than the restrictive assumptions made by Goldie.
We characterize those rings in which the principal indecomposable left ideals each contain a unique minimal left ideal (Theorem (4.2)). It is sufficient to handle indecomposable rings (Lemma (1.4)). Such a ring is also a blocked triangular matrix ring. There exist r positive integers K1,..., Kr such that the i,jth block of a typical matrix is a Ki x Kj matrix with arbitrary entries in a subgroup Dij of the additive group of a fixed skewfield D. Each Dii is a sub-skewfield of D and Dri = D for all i. Conversely, every matrix ring which has this form is indecomposable, faithfully represented on the right side of its left socle, and possesses the property that every principal indecomposable left ideal contains a unique minimal left ideal.
The principal indecomposable left ideals may have unique composition series even though the ring does not have minimal condition on right ideals. We characterize this situation by defining a partial ordering ρ on {i, 2,...,r} where we set iρj if Dij ≠ 0. Every principal indecomposable left ideal has a unique composition series if and only if the diagram of ρ is an inverted tree and every Dij is a one-dimensional left vector space over Dii (Theorem (5.4)).
We show (Theorem (2.2)) that every ring A of the type we are studying is a unique subdirect sum of less complex rings A1,...,As of the same type. Namely, each Ai has only one isomorphism class of minimal left ideals and the minimal left ideals of different Ai are non-isomorphic as left A-modules. We give (Theorem (2.1)) necessary and sufficient conditions for a ring which is a subdirect sum of rings Ai having these properties to be faithfully represented on the right side of its left socle. We show ((4.F), p. 42) that up to technical trivia the rings Ai are matrix rings of the form
[...]. Each Qj comes from the faithful irreducible matrix representation of a certain skewfield over a fixed skewfield D. The bottom row is filled in by arbitrary elements of D.
In Part V we construct an interesting class of rings faithfully represented on their left socle from a given partial ordering on a finite set, given skewfields, and given additive groups. This class of rings contains the ones in which every principal indecomposable left ideal has a unique minimal left ideal. We identify the uniquely determined subdirect summands mentioned above in terms of the given partial ordering (Proposition (5.2)). We conjecture that this technique serves to construct all the rings which are a unique subdirect sum of rings each having the property that every principal-indecomposable left ideal contains a unique minimal left ideal.