920 resultados para Sub-registry. Empirical bayesian estimator. General equation. Balancing adjustment factor
Resumo:
OBJECTIVES: The aim of the study was to statistically model the relative increased risk of cardiovascular disease (CVD) per year older in Data collection on Adverse events of anti-HIV Drugs (D:A:D) and to compare this with the relative increased risk of CVD per year older in general population risk equations. METHODS: We analysed three endpoints: myocardial infarction (MI), coronary heart disease (CHD: MI or invasive coronary procedure) and CVD (CHD or stroke). We fitted a number of parametric age effects, adjusting for known risk factors and antiretroviral therapy (ART) use. The best-fitting age effect was determined using the Akaike information criterion. We compared the ageing effect from D:A:D with that from the general population risk equations: the Framingham Heart Study, CUORE and ASSIGN risk scores. RESULTS: A total of 24 323 men were included in analyses. Crude MI, CHD and CVD event rates per 1000 person-years increased from 2.29, 3.11 and 3.65 in those aged 40-45 years to 6.53, 11.91 and 15.89 in those aged 60-65 years, respectively. The best-fitting models included inverse age for MI and age + age(2) for CHD and CVD. In D:A:D there was a slowly accelerating increased risk of CHD and CVD per year older, which appeared to be only modest yet was consistently raised compared with the risk in the general population. The relative risk of MI with age was not different between D:A:D and the general population. CONCLUSIONS: We found only limited evidence of accelerating increased risk of CVD with age in D:A:D compared with the general population. The absolute risk of CVD associated with HIV infection remains uncertain.
Resumo:
The arbitrary angular momentum solutions of the Schrödinger equation for a diatomic molecule with the general exponential screened coulomb potential of the form V(r) = (- a / r){1+ (1+ b )e-2b } has been presented. The energy eigenvalues and the corresponding eigenfunctions are calculated analytically by the use of Nikiforov-Uvarov (NU) method which is related to the solutions in terms of Jacobi polynomials. The bounded state eigenvalues are calculated numerically for the 1s state of N2 CO and NO
Resumo:
The purpose of this study is to examine the impact of the choice of cut-off points, sampling procedures, and the business cycle on the accuracy of bankruptcy prediction models. Misclassification can result in erroneous predictions leading to prohibitive costs to firms, investors and the economy. To test the impact of the choice of cut-off points and sampling procedures, three bankruptcy prediction models are assessed- Bayesian, Hazard and Mixed Logit. A salient feature of the study is that the analysis includes both parametric and nonparametric bankruptcy prediction models. A sample of firms from Lynn M. LoPucki Bankruptcy Research Database in the U. S. was used to evaluate the relative performance of the three models. The choice of a cut-off point and sampling procedures were found to affect the rankings of the various models. In general, the results indicate that the empirical cut-off point estimated from the training sample resulted in the lowest misclassification costs for all three models. Although the Hazard and Mixed Logit models resulted in lower costs of misclassification in the randomly selected samples, the Mixed Logit model did not perform as well across varying business-cycles. In general, the Hazard model has the highest predictive power. However, the higher predictive power of the Bayesian model, when the ratio of the cost of Type I errors to the cost of Type II errors is high, is relatively consistent across all sampling methods. Such an advantage of the Bayesian model may make it more attractive in the current economic environment. This study extends recent research comparing the performance of bankruptcy prediction models by identifying under what conditions a model performs better. It also allays a range of user groups, including auditors, shareholders, employees, suppliers, rating agencies, and creditors' concerns with respect to assessing failure risk.
Resumo:
This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.
Resumo:
We propose an alternate parameterization of stationary regular finite-state Markov chains, and a decomposition of the parameter into time reversible and time irreversible parts. We demonstrate some useful properties of the decomposition, and propose an index for a certain type of time irreversibility. Two empirical examples illustrate the use of the proposed parameter, decomposition and index. One involves observed states; the other, latent states.
Resumo:
McCausland (2004a) describes a new theory of random consumer demand. Theoretically consistent random demand can be represented by a \"regular\" \"L-utility\" function on the consumption set X. The present paper is about Bayesian inference for regular L-utility functions. We express prior and posterior uncertainty in terms of distributions over the indefinite-dimensional parameter set of a flexible functional form. We propose a class of proper priors on the parameter set. The priors are flexible, in the sense that they put positive probability in the neighborhood of any L-utility function that is regular on a large subset bar(X) of X; and regular, in the sense that they assign zero probability to the set of L-utility functions that are irregular on bar(X). We propose methods of Bayesian inference for an environment with indivisible goods, leaving the more difficult case of indefinitely divisible goods for another paper. We analyse individual choice data from a consumer experiment described in Harbaugh et al. (2001).
Resumo:
In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) linear estimator for stationary invertible vector autoregressive moving average (VARMA) models in the echelon form representation. General conditions for consistency and asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of the estimator is also provided, so that tests and confidence intervals can easily be constructed.
Resumo:
La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, c’est-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides? Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection d’instruments qui demeurent valides même en présence d’identification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau) et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème bien connu du rendement à l’éducation. Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût de la firme et que le prix du fuel en est un instrument valide pour l’output. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à l’hétéroscédasticité et l’autocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même s’il y a un problème d’identification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles [Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.
Resumo:
On s’accorde à dire que les adolescents constituent l’avenir quel que soit le temps et l’espace considéré. Il est également reconnu que le développement de leur capital humain et social, nécessaire pour une vie adulte de qualité, dépend des conditions dans lesquelles ils vivent et de l’environnement dans lequel s’opérera la transition vers cette vie adulte. Plus que dans toute autre partie du monde, ce constat est encore plus d’actualité en Afrique sub-Saharienne où, à la situation socio-économique déjà précaire, s’ajoutent d’importants problèmes de santé sexuelle et reproductive auxquels font face les adolescents en particulier le VIH. Conscients de l’enjeu majeur que représente la santé des adolescents, les gouvernements en Afrique sub-Saharienne, aidés en cela par les organismes non-gouvernementaux et toute la communauté internationale, ont inscrit la promotion de stratégies efficientes en santé sexuelle et reproductive des adolescents comme haute priorité dans leurs agendas. Mais force est de constater que l’élaboration et la mise en œuvre de telles stratégies supposent la production de connaissances sans cesse actualisées ainsi que la formulation de politiques innovatrices basées sur des données probantes et éprouvées en matière de santé sexuelle et reproductive, ce qui n’est pas toujours le cas. De plus, le fait que ce segment particulier de la population ne constitue pas un groupe homogène pose un défi supplémentaire quant à l’élaboration de stratégies généralisables. Fort de ce qui précède, le présent travail, qui porte sur le Burkina Faso, le Ghana, le Malawi et l’Ouganda, fait d’abord le point sur les problèmes majeurs de santé sexuelle et reproductive auxquels fait face cette frange spécifique de la population, tout en jetant un regard critique sur les efforts déployés par les sciences sociales pour les analyser. Il apporte ensuite des réponses à des questions spécifiques de recherche que nous nous sommes posées à travers les trois articles qui constituent l’ossature de cette thèse et dont l’essentiel de l’analyse empirique peut être résumé comme suit : Dans le premier article, nous sommes partis du constat suivant : dans les quatre pays étudiés, une importante proportion des adolescents qui se déclarent non encore sexuellement actifs pensent paradoxalement que leurs chances de contracter le VIH sont très grandes. Face à un tel constat, la question que l’on est en droit de se poser est celle de savoir pourquoi sont-ils si préoccupés? Quels sont les facteurs qui déterminent cette perception du risque? Les résultats confirment ce que certaines études ont déjà démontré à savoir que les individus élaborent leur propre définition du risque qui peut ne pas se résumer nécessairement à une opposition binaire «risque/aucun risque», mais est plutôt fonction des caractéristiques individuelles mais aussi du contexte social et épidémiologique dans lesquels ils vivent. Le deuxième article de la thèse analyse le contexte dans lequel s’opère la transition vers le premier rapport sexuel chez les adolescentes des quatre pays étudiés. Il part du constat selon lequel les recherches ont très souvent abordé les comportements sexuels des adolescents sous un angle marqué par la dichotomie entre les «sexuellement actifs» et les «non encore sexuellement actifs». Or le calendrier de l’entrée en sexualité et le contexte dans lequel elle a lieu (dans l’union ou hors union) sont non seulement des marqueurs des comportements sexuels à risque vis-à-vis du VIH, mais ils conditionnent aussi et surtout la qualité de la transition vers l’entrée dans la vie adulte. Les résultats montrent ici également que le contrôle parental est significativement associé à une faible probabilité pour les adolescents d’initier la sexualité hors de l’union. Quant au troisième article, il se penche sur un cas précis de comportement à risques chez les adolescents: le multipartenariat sexuel aggravé par la non utilisation systématique du condom, pourtant le seul moyen pour l’instant (en dehors de l’abstinence) de se protéger contre les infections sexuellement transmissibles et le VIH/SIDA. Les résultats montrent entre autres que le contrôle parental est significativement associé à une faible probabilité de comportement sexuel à risque, défini ici comme étant la co-occurrence de plusieurs partenaires sexuels au cours de 12 derniers mois et la non-utilisation systématique du condom avec chacun des partenaires. Sur un plan programmatique, ce résultat est plutôt encourageant car il prouve que l’autorité parentale jadis considérée comme érodée, demeure une pierre angulaire dans les stratégies de prévention du VIH chez les adolescents.
Resumo:
We describe and evaluate a new estimator of the effective population size (N-e), a critical parameter in evolutionary and conservation biology. This new "SummStat" N-e. estimator is based upon the use of summary statistics in an approximate Bayesian computation framework to infer N-e. Simulations of a Wright-Fisher population with known N-e show that the SummStat estimator is useful across a realistic range of individuals and loci sampled, generations between samples, and N-e values. We also address the paucity of information about the relative performance of N-e estimators by comparing the SUMMStat estimator to two recently developed likelihood-based estimators and a traditional moment-based estimator. The SummStat estimator is the least biased of the four estimators compared. In 32 of 36 parameter combinations investigated rising initial allele frequencies drawn from a Dirichlet distribution, it has the lowest bias. The relative mean square error (RMSE) of the SummStat estimator was generally intermediate to the others. All of the estimators had RMSE > 1 when small samples (n = 20, five loci) were collected a generation apart. In contrast, when samples were separated by three or more generations and Ne less than or equal to 50, the SummStat and likelihood-based estimators all had greatly reduced RMSE. Under the conditions simulated, SummStat confidence intervals were more conservative than the likelihood-based estimators and more likely to include true N-e. The greatest strength of the SummStat estimator is its flexible structure. This flexibility allows it to incorporate any, potentially informative summary statistic from Population genetic data.
Resumo:
This paper is turned to the advanced Monte Carlo methods for realistic image creation. It offers a new stratified approach for solving the rendering equation. We consider the numerical solution of the rendering equation by separation of integration domain. The hemispherical integration domain is symmetrically separated into 16 parts. First 9 sub-domains are equal size of orthogonal spherical triangles. They are symmetric each to other and grouped with a common vertex around the normal vector to the surface. The hemispherical integration domain is completed with more 8 sub-domains of equal size spherical quadrangles, also symmetric each to other. All sub-domains have fixed vertices and computable parameters. The bijections of unit square into an orthogonal spherical triangle and into a spherical quadrangle are derived and used to generate sampling points. Then, the symmetric sampling scheme is applied to generate the sampling points distributed over the hemispherical integration domain. The necessary transformations are made and the stratified Monte Carlo estimator is presented. The rate of convergence is obtained and one can see that the algorithm is of super-convergent type.
Resumo:
Bayesian analysis is given of an instrumental variable model that allows for heteroscedasticity in both the structural equation and the instrument equation. Specifically, the approach for dealing with heteroscedastic errors in Geweke (1993) is extended to the Bayesian instrumental variable estimator outlined in Rossi et al. (2005). Heteroscedasticity is treated by modelling the variance for each error using a hierarchical prior that is Gamma distributed. The computation is carried out by using a Markov chain Monte Carlo sampling algorithm with an augmented draw for the heteroscedastic case. An example using real data illustrates the approach and shows that ignoring heteroscedasticity in the instrument equation when it exists may lead to biased estimates.