887 resultados para Structure-Activity Relationship


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migrastatin, a macrolide natural product, and its structurally related analogs are potent inhibitors of cancer cell metastasis, invasion and migration. In the present work, a specialized fragment-based method was employed to develop QSAR models for a series of migrastatin and isomigrastatin analogs. Significant correlation coefficients were obtained (best model, q(2) = 0.76 and r(2) = 0.91) indicating that the QSAR models possess high internal consistency. The best model was then used to predict the potency of an external test set, and the predicted values were in good agreement with the experimental results (R(2) (pred) = 0.85). The final model and the corresponding contribution maps, combined with molecular modeling studies, provided important insights into the key structural features for the anticancer activity of this family of synthetic compounds based on natural products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide, tuberculosis (TB) is the leading cause of death among curable infectious diseases. Multidrug-resistant Mycobacterium tuberculosis is an emerging problem of great importance to public health, and there is an urgent need for new anti-TB drugs. In the present work, classical 2D quantitative structure-activity relationships (QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 91 isoniazid derivatives. Significant statistical models (classical QSAR, q(2) = 0.68 and r(2) = 0.72; HQSAR, q(2) = 0.63 and r(2) = 0.86) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 24 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, r(pred)(2) = 0.87; classical QSAR, r(pred)(2) = 0.75).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas` disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms of human morbidity and mortality. Cruzain, the major cysteine protease from Trypanosoma cruzi, is an attractive target for antitrypanosomal chemotherapy. In the present work, classical two-dimensional quantitative structure-activity relationships (2D QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 45 thiosemicarbazone and semicarbazone derivatives as inhibitors of T. cruzi cruzain. Significant statistical models (HQSAR, q2=0.75 and r2=0.96; classical QSAR, q2=0.72 and r2=0.83) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 10 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, [image omitted]=0.95; classical QSAR, [image omitted]=0.91), indicating the existence of complementary between the two ligand-based drug design techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new series of organotelluranes were synthesized and investigated, and the structure-activity relationships in cysteine proteases inhibition were determinated. It was possible to identify the relevance of structural components linked to the reactivity of these compounds as inhibitors. For example, dibromo-organotelluranes showed to be more reactive than dichloro-organotelluranes towards cysteine cathepsins V and S. Besides, no remarkable enantio-selectivity was verified. In general the achiral organotelluranes were more reactive than the chiral congeners against cysteine cathepsins V and S. A reactivity order for organochalcogenanes and cysteine cathepsins was proposed after the comparison of the inhibitory potencies of organotelluranes with the related organoselenanes. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vitro antifungal activity of six thioureido substituted amines (P1-P6) was evaluated against Candida species, including Candida albicans, C. glabrata, C. krusei and C. parapsilosis. These tri- and tetra-thioureido amino derivatives with different methylation levels were synthesised through easy synthetic routes to evaluate their antifungal properties against Candida species. Among all studied derivatives, the tri-(2-thioureido-ethyl)-amine (P1) was the most active compound inhibiting C. albicans and C. glabrata at a concentration of 0.49 mu g ml(-1); P3, the N,N `,N ``,N ```-hexamethyl-derivative, also showed inhibitory activity against C. albicans and C. glabrata, but in higher concentrations (250 mu g ml(-1)). The N,N `,N ``,N ```-tetramethylated amine (P5) only inhibited the growth of C. glabrata, but its corresponding N,N `,N ``,N ```-octamethyl derivative (P6) was also active against C. glabrata (125 mu g ml(-1)) and it was the only compound active against C. parapsilosis. P2 and P4 showed no significant antifungal activity. The structure-activity relationship of the thioureido-substituted derivatives indicates that the molecular branching and the alkylation levels can influence the antifungal activity. This study demonstrated that thioureido derivatives exhibited significant antifungal activity against Candida species and that they can be considered as a very promising bioactive lead compound to develop novel antifungal agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we isolated a novel crotamine like protein from the Crotalus durissus cascavella venom by combination of molecular exclusion and analytical reverse phase HPLC. Its primary structure was:YKRCHKKGGHCFPKEKICLPPSSDLGKMDCRWKRK-CCKKGS GK. This protein showed a molecular mass of 4892.89 da that was determined by Matrix Assisted Laser Desorption Ionization Time-of-flight (MALDI-TOF) mass spectrometry. The approximately pI value of this protein was determined in 9.9 by two-dimensional electrophoresis. This crotamine-like protein isolated here and that named as Cro 2 produced skeletal muscle spasm and spastic paralysis in mice similarly to other crotamines like proteins. Cro 2 did not modify the insulin secretion at low glucose concentration (2.8 and 5.6 mM), but at high glucose concentration (16.7 mM) we observed an insulin secretion increasing of 2.7-3.0-fold than to control. The Na+ channel antagonist tetrodoxin (6 mM) decreased glucose and Cro 2-induced insulin secretion. These results suggested that Na+ channel are involved in the insulin secretion. In this article, we also purified some peptide fragment from the treatment of reduced and carboxymethylated Cro 2 (RC-Cro 2) with cyanogen bromide and protease V8 from Staphylococcus aureus. The isolated pancreatic beta-cells were then treated with peptides only at high glucose concentration (16.7 mM), in this condition only two peptides induced insulin secretion. The amino acid sequence homology analysis of the whole crotamine as well as the biologically-active peptide allowed determining the consensus region of the biologically-active crotamine responsible for insulin secretion was KGGHCFPKE and DCRWKWKCCKKGSG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The knowledge of flavonoids involved in plant-plant interactions and their mechanisms of action are poor and, moreover, the structural characteristics required for these biological activities are scarcely known. The objective of this work was to study the possible in vitro phytotoxic effects of 27 flavonoids on the germination and early radical growth of Raphanus sativus L. and Lepidium sativum L., with the aim to evaluate the possible structure/activity relationship. Moreover, the antioxidant activity of the same compounds was also evaluated. Generally, in response to various tested flavonoids, germination was only slightly affected, whereas significant differences were observed in the activity of the various tested flavonoids against radical elongation. DPPH test confirms the antioxidant activity of luteolin, quercetin, catechol, morin, and catechin. The biological activity recorded is discussed in relation to the structure of compounds and their capability to interact with cell structures and physiology. No correlation was found between phytotoxic and antioxidant activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantitative structure-activity relationship (QSAR) study of 19 quinone compounds with trypanocidal activity was performed by Partial Least Squares (PLS) and Principal Component Regression (PCR) methods with the use of leave-one-out crossvalidation procedure to build the regression models. The trypanocidal activity of the compounds is related to their first cathodic potential (Ep(c1)). The regression PLS and PCR models built in this study were also used to predict the Ep(c1) of six new quinone compounds. The PLS model was built with three principal components that described 96.50% of the total variance and present Q(2) = 0.83 and R-2 = 0.90. The results obtained with the PCR model were similar to those obtained with the PLS model. The PCR model was also built with three principal components that described 96.67% of the total variance with Q(2) = 0.83 and R-2 = 0.90. The most important descriptors for our PLS and PCR models were HOMO-1 (energy of the molecular orbital below HOMO), Q4 (atomic charge at position 4), MAXDN (maximal electrotopological negative difference), and HYF (hydrophilicity index).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structures of five new non-electrophilic β-strand-templated thrombin active-site inhibitors have been determined bound to the enzyme. Four co-crystallize with hirugen and inhibitor isomorphously to produce thrombin-hirugen crystals (monoclinic, space group C2), while one co-crystallizes in the hexagonal system, space group P65. A 1,4-substituted cyclohexyl moiety is conserved at the P1 position of all the inhibitors, along with a fused hetero-bicyclic five- and six-membered ring that occupies the P2 site. Amino, amidino and aminoimidazole groups are attached to the cyclohexyl ring for recognition at the S1 specificity site, while benzylsulfonyl and diphenyl groups enhance the binding at the S3 subsite. The cyclohexyl groups at the P1 positions of three of the inhibitors appear to be in the energetically favored chair conformation, while the imidazole-substituted cyclohexyl rings are in a boat conformation. Somewhat unexpectedly, the two cyclohexyl-aminoimidazole groups bind differently in the specificity site; the unique binding of one is heretofore unreported. The other inhibitors generally mimic arginyl binding at S1. This group of inhibitors combines the nonelectrophilicity and selectivity of DAPA-like compounds and the more optimal binding features of the S1-S3 sites of thrombin for peptidic molecules, which results in highly potent (binding constants 12 nM-16 pM, one being 1.1 μM) and selective (ranging from 140 to 20 000 times more selective compared with trypsin) inhibitors of thrombin. The binding modes of these novel inhibitors are correlated with their binding constants, as is their selectivity, in order to provide further insight for the design of therapeutic antithrombotic agents that inhibit thrombin directly at the active site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-Terminally and internally labeled analogues of the hormones angiotensin (AII, DRVYIHPF) and bradykinin (BK, RPPGFSPFR) were synthesized containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4- carboxylic acid (TOAC). TOAC replaced Asp 1 (TOAC 1-AII) and Val 3 (TOAC 3-AII) in AII and was inserted prior to Arg 1 (TOAC 0-BK) and replacing Pro 3 (TOAC 3-BK) in BK. The peptide conformational properties were examined as a function of trifluoroethanol (TFE) content and pH. Electron paramagnetic resonance spectra were sensitive to both variables and showed that internally labeled analogues yielded rotational correlation times (TC) considerably larger than N-terminally labeled ones, evincing the greater freedom of motion of the N-terminus. In TFE, τ C increased due to viscosity effects. Calculation of τ Cpeptide/τ CTOAC ratios indicated that the peptides acquired more folded conformations. Circular dichroism spectra showed that, except for TOAC 1-AII in TFE, the N-terminally labeled analogues displayed a conformational behavior similar to that of the parent peptides. In contrast, under all conditions, the TOAC 3 derivatives acquired more restricted conformations. Fluorescence spectra of All and its derivatives were especially sensitive to the ionization of Tyr 4. Fluorescence quenching by the nitroxide moiety was much more pronounced for TOAC 3-AII The conformational behavior of the TOAC derivatives bears excellent correlation with their biological activity, since, while the N-terminally labeled peptides were partially active, their internally labeled counterparts were inactive [Nakaie, C. R., et al., Peptides 2002, 23, 65-70]. The data demonstrate that insertion of TOAC in the middle of the peptide chain induces conformational restrictions that lead to loss of backbone flexibility, not allowing the peptides to acquire their receptor-bound conformation. © 2004 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and drugs that inhibit this enzyme may have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Here, we describe kinetics and crystal structure of human PNP in complex with 7-methyl-6-thio-guanosine, a synthetic substrate, which is largely used in activity assays. Analysis of the structure identifies different protein conformational changes upon ligand binding, and comparison of kinetic and structural data permits an understanding of the effects of atomic substitution on key positions of the synthetic substrate and their consequences to enzyme binding and catalysis. Such knowledge may be helpful in designing new PNP inhibitors. © 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two series of new chitosan derivatives were synthesized by reaction of deacetylated chitosan (CH) with propyl (CH-Propyl) and pentyl (CH-Pentyl) trimethylammonium bromides to obtain derivatives with increasing degrees of substitution (DS). The derivatives were characterized by 1H NMR and potentiometric titration techniques and their antifungal activities on the mycelial growth of Aspergillus flavus were investigated in vitro. The antifungal activities increase with DS and the more substituted derivatives of both series, CH-Propyl and CH-Pentyl, exhibited antifungal activities respectively three and six times higher than those obtained with commercial and deacetylated chitosan. The minimum inhibitory concentrations (MIC) were evaluated at 24, 48 and 72h by varying the polymer concentration from 0.5 to 16g/L and the results showed that the quaternary derivatives inhibited the fungus growth at polymer concentrations four times lower than that obtained with deacetylated chitosan (CH). The chitosans modified with pentyltrimethylammonium bromide exhibited higher activity and results are discussed taking into account the degree of substitution (DS). © 2012 Elsevier GmbH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)