961 resultados para Structural damage detection
Resumo:
Spiking Neural Networks (SNNs) are bio-inspired Artificial Neural Networks (ANNs) utilizing discrete spiking signals, akin to neuron communication in the brain, making them ideal for real-time and energy-efficient Cyber-Physical Systems (CPSs). This thesis explores their potential in Structural Health Monitoring (SHM), leveraging low-cost MEMS accelerometers for early damage detection in motorway bridges. The study focuses on Long Short-Term SNNs (LSNNs), although their complex learning processes pose challenges. Comparing LSNNs with other ANN models and training algorithms for SHM, findings indicate LSNNs' effectiveness in damage identification, comparable to ANNs trained using traditional methods. Additionally, an optimized embedded LSNN implementation demonstrates a 54% reduction in execution time, but with longer pre-processing due to spike-based encoding. Furthermore, SNNs are applied in UAV obstacle avoidance, trained directly using a Reinforcement Learning (RL) algorithm with event-based input from a Dynamic Vision Sensor (DVS). Performance evaluation against Convolutional Neural Networks (CNNs) highlights SNNs' superior energy efficiency, showing a 6x decrease in energy consumption. The study also investigates embedded SNN implementations' latency and throughput in real-world deployments, emphasizing their potential for energy-efficient monitoring systems. This research contributes to advancing SHM and UAV obstacle avoidance through SNNs' efficient information processing and decision-making capabilities within CPS domains.
Resumo:
Thiamine deficiency (TD) is the underlying cause of Wernicke's encephalopathy (WE), an acute neurological disorder characterized by structural damage to key periventricular structures in the brain. Increasing evidence suggests these focal histological lesions may be representative of a gliopathy in which astrocyte-related changes are a major feature of the disorder. These changes include a loss of the glutamate transporters GLT-1 and GLAST concomitant with elevated interstitial glutamate levels, lowered brain pH associated with increased lactate production, decreased levels of GFAP, reduction in the levels of glutamine synthetase, swelling, alterations in levels of aquaporin-4, and disruption of the blood-brain barrier. This review focusses on how these manifestations contribute to the pathophysiology of TD and possibly WE.
Resumo:
Seizures in some 30% to 40% of patients with epilepsy fail to respond to antiepileptic drugs or other treatments. While much has been made of the risks of new drug therapies, not enough attention has been given to the risks of uncontrolled and progressive epilepsy. This critical review summarizes known risks associated with refractory epilepsy, provides practical clinical recommendations, and indicates areas for future research. Eight international epilepsy experts from Europe, the United States, and South America met on May 4, 2013, to present, review, and discuss relevant concepts, data, and literature on the consequences of refractory epilepsy. While patients with refractory epilepsy represent the minority of the population with epilepsy, they require the overwhelming majority of time, effort, and focus from treating physicians. They also represent the greatest economic and psychosocial burdens. Diagnostic procedures and medical/surgical treatments are not without risks. Overlooked, however, is that these risks are usually smaller than the risks of long-term, uncontrolled seizures. Refractory epilepsy may be progressive, carrying risks of structural damage to the brain and nervous system, comorbidities (osteoporosis, fractures), and increased mortality (from suicide, accidents, sudden unexpected death in epilepsy, pneumonia, vascular disease), as well as psychological (depression, anxiety), educational, social (stigma, driving), and vocational consequences. Adding to this burden is neuropsychiatric impairment caused by underlying epileptogenic processes (essential comorbidities), which appears to be independent of the effects of ongoing seizures themselves. Tolerating persistent seizures or chronic medicinal adverse effects has risks and consequences that often outweigh risks of seemingly more aggressive treatments. Future research should focus not only on controlling seizures but also on preventing these consequences.
Resumo:
Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARγ, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFκB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-α also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-α activation and release, inhibitors of NFκB, specific inhibitors of iNOS and COX-2 activities and PPARγ agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.
Resumo:
The noise, vibration and harshness (NVH) performance of passenger vehicles strongly depends on the fluid-structure interaction between the air in the vehicle cavity and the sheet metal structure of the vehicle. Most of the noise and vibration problems related to this interaction come from resonance peaks of the sheet metal, which are excited by external forces (road, engine, and wind). A reduction in these resonance peaks can be achieved by applying bitumen damping layers, also called deadeners, in the sheet metal. The problem is where these deadeners shall be fixed, which is usually done in a trial-and-error basis. In this work, one proposes the use of embedded sensitivity to locate the deadeners in the sheet metal of the vehicle, more specifically in the vehicle roof. Experimental frequency response functions (FRFs) of the roof are obtained and the data are processed by adopting the embedded sensitivity method, thus obtaining the sensitivity of the resonance peaks on the local increase in damping due to the deadeners. As a result, by examining the sensitivity functions, one can find the optimum location of the deadeners that maximize their effect in reducing the resonance peaks of interest. After locating the deadeners in the optimum positions, it was possible to verify a strong reduction in resonance peaks of the vehicle roof, thus showing the efficiency of the procedure. The main advantage of this procedure is that it only requires FRF measurements of the vehicle in its original state not needing any previous modification of the vehicle structure to find the sensitivity functions. [DOI: 10.1115/1.4000769]
Resumo:
Conventional threading operations involve two distinct machining processes: drilling and threading. Therefore, it is time consuming for the tools must be changed and the workpiece has to be moved to another machine. This paper presents an analysis of the combined process (drilling followed by threading) using a single tool for both operations: the tap-milling tool. Before presenting the methodology used to evaluate this hybrid tool, the ODS (operating deflection shapes) basics is shortly described. ODS and finite element modeling (FEM) were used during this research to optimize the process aiming to achieve higher stable machining conditions and increasing the tool life. Both methods allowed the determination of the natural frequencies and displacements of the machining center and optimize the workpiece fixture system. The results showed that there is an excellent correlation between the dynamic stability of the machining center-tool holder and the tool life, avoiding a tool premature catastrophic failure. Nevertheless, evidence showed that the tool is very sensitive to work conditions. Undoubtedly, the use of ODS and FEM eliminate empiric decisions concerning the optimization of machining conditions and increase drastically the tool life. After the ODS and FEM studies, it was possible to optimize the process and work material fixture system and machine more than 30,000 threaded holes without reaching the tool life limit and catastrophic fail.
Resumo:
Objective: To describe the associations between hand osteoarthritis (OA), pain and disability in males and females and to further validate the Australian/Canadian CA hand index (AUSCAN LK3.0). Design: Cross-sectional study of 522 subjects from 101 Tasmanian families (males N=174, females N=348). Hand OA was assessed by two observers using the Altman atlas for joint space narrowing and osteophytes at distal interphalangeal and first carpometacarpal joints as well as a score for Heberden's nodes based on hand photography. Hand pain and function were assessed by the AUSCAN LK3.0 and grip strength by dynamometry in both hands on two occasions. Results: The prevalence of hand CA was high in this sample at 44-71% (depending on site). Pain and dysfunction increased with age while grip strength decreased (all P <0.001). All three measures were markedly worse in women, even after taking the severity of arthritis into account. Hand CA explained 5.7-10% of the variation in function, grip strength and pain scores, even after adjustment for age and sex. Further adjustment suggested that the osteoarthritic associations with function and grip strength were largely mediated by pain. Severity of disease was more strongly associated with these scores than presence or absence. Lastly, the AUSCAN LK3.0 showed a comparable association to grip strength with structural damage providing further evidence of index validity. Conclusions: Hand CA at these two sites makes substantial contributions to hand function, strength and pain. The associations with function and strength measures appear mediated by pain. Gender differences in all three measures persist after adjustment for variation in age and CA severity indicating that factors apart from radiographic disease are responsible. (C) 2001 OsteoArthritis Research Society International.
Resumo:
Dissertação de Mestrado em Ambiente, Saúde e Segurança.
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório de Engenharia Civil (LNEC) para obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas
Resumo:
Neurological manifestation is uncommon in dengue infection. The pathogenesis of central nervous system involvement is controversial. We report a rare case of acute disseminated encephalomyelitis in classic dengue, with isolation of serotype 3 in liquor. This condition was associated with significant structural damage detected by magnetic resonance.
Resumo:
Tenofovir (TFV) is one of the most used antiretroviral drugs. However, it is associated with tubular damage with mitochondria as a possible target. Tubulopathy precedes glomerular dysfunction, thus classic markers of renal function like the glomerular filtration rate (GFR) do not detect early TFV damage. Prediction and management of drug induced renal injury (DIRI) rely on the mechanisms of the drug insult and in optimal animal models to explore it. Zebrafish (Danio rerio) offers unique advantages for assessing DIRI, since the pronephros is structurally very similar to its human counterpart and is fully developed at 3.5 days postfertilization. The main aim of the present work was to evaluate the effects of TFV, as well as its pro-drug, tenofovir disoproxil fumarate (TDF), on the GFR and in mitochondria morphology in tubular cells of zebrafish larvae. Lethality curves were performed to understand the relationship between drug concentration and lethality. LC10 was selected to explore the renal function using the FITC-inulin assay and to analyze the mitochondrial toxicity by electron microscopy on larvae exposed to TDF, TFV, paracetamol and gentamicin (positive controls) or water (negative control). Lethality curves showed that gentamicin was the most lethal drug, followed by TDF, TFV and paracetamol. Gentamicin and paracetamol decreased the GFR, but no differences were found for either TDF or TFV, when compared to controls (%FITC Control = 33±8; %FITC TDF = 35±10; %FITC TFV = 30±10; %FITC Gentamicin = 46±17; %FITC Paracetamol = 83±14). Tubular mitochondria from treated larvae were notably different from non-treated larvae, showing swelling, irregular shapes, decreased mitochondria network, cristae disruption and loss of matrix granules. These results are in agreement with the effects of these drugs in humans and thus, demonstrate that zebrafish larvae can be a good model to assess the functional and structural damage associated with DIRI.
Resumo:
The Our Lady of Conception church is located in village of Monforte (Portugal) and is not in use nowadays. The church presents structural damage and, consequently, a study was carried out. The study involved the survey of the damage, dynamic identification tests under ambient vibration and the numerical analysis. The church is constituted by the central nave, the chancel, the sacristy and the corridor to access the pulpit. The masonry walls present different thickness, namely 0.65 m in the chancel, 0.70 m in the sacristy, 0.92 in the central nave and 0.65 m in the corridor. The masonry walls present 8 buttresses with different dimensions. The total longitudinal and transversal dimensions of the church are equal to 21.10 m and 14.26 m, respectively. The survey of the damage showed that, in general, the masonry walls are in good conditions, with exception of the transversal walls of the nave, which present severe cracks. The arches of the vault presents also severe cracks along the central nave. As consequence, the infiltrations have increased the degradation of the vault and paintings. Furthermore, the foundations present settlements in the Southwest direction. The dynamic identification test were carried out under the action of ambient excitation of the wind and using 12 piezoelectric accelerometers of high sensitivity. The dynamic identification tests allowed to estimate the dynamic properties of the church, namely frequencies, mode shapes and damping ratios. A FEM numerical model was prepared and calibrated, based on the first four experimental modes estimated in the dynamic identification tests. The average error between the experimental and numerical frequencies of the first four modes is equal to 5%. After calibration of the numerical model, pushover analyses with a load pattern proportional to the mass, in the transversal and longitudinal direction of the church, were performed. The results of the analysis numerical allow to conclude that the most vulnerable direction of the church is in the transversal one and the maximum load factor is equal to 0.35.
Resumo:
Mitigation pays. It includes any activities that prevent an emergency, reduce the chance of an emergency happening, or lessen the damaging effects of unavoidable emergencies. Investing in mitigation steps now such as constructing barriers such as levees and purchasing flood insurance will help reduce the amount of structural damage to your home and financial loss from building and crop damage should a flood or flash flood occur.
Resumo:
The Rebuild Iowa Education Task Force is composed of Iowans with experience and expertise related to the impact of the tornadoes, storms, and floods of 2008 on the educational system in Iowa. The massive damage greatly impacted educational facilities and enrollment, resulting in thousands of displaced students and significant long-term rebuilding needs. In addition, the education system is a “community center,” and in many ways acts as a first responder to Iowans experiencing the disasters. It is important to also recognize this role and the need for “non-educational” (and often non-quantifiable) supports as a part of the overall recovery effort. There are a few parts of the state that sustained significant structural and other damage as a result of the disasters. However, many school districts and educational institutions throughout the state experienced damage that resulted in re-allocating building usage, enrollment issues (because of housing and relocation issues in the community), or use of school facilities to assist in the recovery efforts (by housing displaced community agencies and providing temporary shelter for displaced Iowans). At this time, damage estimates are only estimates and numbers are revised often. Estimates of damage are being developed by multiple agencies, including FEMA, the Iowa Department of Education, insurance companies, and schools themselves, since there are many different types of damage to be assessed and repaired. In addition to structural damage, educational institutions and communities are trying to find ways to quantify sometimes unquantifiable data, such as future revenue capabilities, population declines, and impact on mental health in the long-term. The data provided in this report is preliminary and as up to date as possible; information is updated on a regular basis as assessments continue and damage estimates are finalized.