187 resultados para Streptomyces halstedii
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pinus taeda is one of the main timber trees in Brazil, occupying 1.8 million ha with an annual productivity of 25-30 m(3) ha(-1). Another important species is Araucaria angustifolia, belonging to the fragile Rainforest biome, which for decades has been a major source of timber in Brazil. Some diseases that affect the roots and/or the stem of these trees and cause "damping-off" of the seedlings, with economic and environmental losses for the forest sector, are caused by the plant pathogenic fungi Fusarium sp. or Armillaria sp. This research project intended to isolate actinobacteria from the Araucaria rhizosphere, which present an antagonistic effect against these fungi. After the selection of the best pathogen inhibitors, morphologic characteristics, enzyme production, and their effect on the growth of Pinus taeda were studied. The actinobacteria were tested for their antagonistic capacity against Fusarium sp. in Petri plates with PDA as substrate. The inhibition zone was measured after 3, 5, 7, and 10 days. Of all the isolates tested, only two of them maintained inhibition zones up to 4 mm for 10 days. The inhibition of Armillaria sp. was tested in liquid medium and also in Petri dishes through the evaluation of the number of the fungal rhizomorphs in dual culture with the actinobacteria. It was found that all five isolates were able to inhibit the rhizomorph production, with the best performance of the isolate A43, which was capable of inhibiting both fungi, Fusarium and Armillaria. In a greenhouse experiment, the effect of five isolates on the growth of Pinus taeda seedlings was tested. Plant height, stem diameter, root and shoot dry matter were determined. The Streptomyces isolate A43 doubled plant growth. These results may lead to the development of new technologies in the identification of still unknown bacterial metabolites and new management techniques to control forest plant diseases.
Resumo:
As formigas da tribo Attini mantêm uma associação com actinobactérias encontradas nos biofilmes presentes no integumento desses insetos. Dentre as actinobactérias associadas às formigas Attini, os gêneros Pseudonocardia e Streptomyces são considerados prevalentes. Estudos indicam que essas bactérias auxiliam na defesa do jardim contra patógenos através da secreção de compostos antimicrobianos. Recentemente foi sugerido que tais bactérias podem ser importantes na defesa do próprio inseto, especialmente contra entomopatógenos. Duas teorias principais foram propostas para explicar as interações entre actinobactérias, formigas Attini e o microfungo parasita Escovopsis. Uma delas defende a coevolução entre esses organismos e a outra rejeita a existência da mesma, argumentando que a interação formiga-actinobactéria é uma simbiose aberta. Neste trabalho, avaliamos a interação entre actinobactérias e Escovopsis em experimentos in vitro. Um total de 14 linhagens de actinobactérias, compreendendo 12 de Pseudonocardia, uma de Streptomyces e uma de Actinoplanes, isoladas de Trachymyrmex (um gênero de formiga Attini não cortadeira) foram testadas frente a quatro linhagens de Escovopsis. Os Escovopsis foram isolados tanto de jardins de fungos de formigas Trachymyrmex quanto de cortadeiras de folhas (Acromyrmex e Atta). O crescimento micelial de Escovopsis (em cm²) foi medido na presença e na ausência (controle) das actinobactérias. Os resultados demonstraram que todas as actinobactérias testadas inibiram Escovopsis, mas as taxas de inibição foram variáveis dependendo da linhagem da actinobactéria (p < 0,05). A linhagem de Streptomyces foi a mais efetiva, corroborando dados da literatura que indicam que outros micro-organismos, além de Pseudonocardia, também apresentam ação inibitória frente à Escovopsis... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
FMN riboswitches are genetic elements that, in many bacteria, control genes responsible for biosynthesis and/or transport of riboflavin (vitamin B2 ). We report that the Escherichia coli ribB FMN riboswitch controls expression of the essential gene ribB coding for the riboflavin biosynthetic enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase (RibB; EC 4.1.99.12). Our data show that the E. coli ribB FMN riboswitch is unusual because it operates at the transcriptional and also at the translational level. Expression of ribB is negatively affected by FMN and by the FMN analog roseoflavin mononucleotide, which is synthesized enzymatically from roseoflavin and ATP. Consequently, in addition to flavoenzymes, the E. coli ribB FMN riboswitch constitutes a target for the antibiotic roseoflavin produced by Streptomyces davawensis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The partitioning of Clavulanic Acid (CA) in a novel inexpensive and stable aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The aqueous two-phase systems are formed by mixing both polymers with a salt (NaCl or Na2SO4) and an aqueous solution of CA. The stability of CA on the presence of both polymers was investigated and it was observed that these polymers do not degrade the biomolecule. The effect of PEG-molecular size, polymer concentrations on the commercial CA partitioning has been studied, at 25 degrees C. The data showed that commercial CA was preferentially partitioned for the PEG-rich phase with a partition coefficient (K-CA) between 1 and 12 in the PEG/NaPA aqueous two phase systems supplemented with NaCl and Na2SO4. The partition to the PEG phase was increased in the systems with high polymer concentrations. Furthermore, Na2SO4 caused higher CA preference for the PEG-phase than NaCl. The systems having a composition with 10 wt.% of PEG4000, 20 wt.% of NaPA8000 and 6 wt.% of Na2SO4 were selected as the optimal ones in terms of recovery of CA from fermented broth of Streptomyces clavuligerus. The partitioning results (K-CA = 9.15 +/- 1.06) are competitive with commercial extraction methods of CA (K-CA = 11.91 +/- 2.08) which emphasizes that the system PEG/NaPA/Na2SO4 can be used as a new process to CA purification/concentration from fermented broth. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Organic hydroperoxides are oxidants generated during bacterial-host interactions. Here, we demonstrate that the peroxidase OhrA and its negative regulator OhrR comprise a major pathway for sensing and detoxifying organic hydroperoxides in the opportunistic pathogen Chromobacterium violaceum. Initially, we found that an ohrA mutant was hypersensitive to organic hydroperoxides and that it displayed a low efficiency for decomposing these molecules. Expression of ohrA and ohrR was specifically induced by organic hydroperoxides. These genes were expressed as monocistronic transcripts and also as a bicistronic ohrR-ohrA mRNA, generating the abundantly detected ohrA mRNA and the barely detected ohrR transcript. The bicistronic transcript appears to be processed. OhrR repressed both the ohrA and ohrR genes by binding directly to inverted repeat sequences within their promoters in a redox-dependent manner. Site-directed mutagenesis of each of the four OhrR cysteine residues indicated that the conserved Cys21 is critical to organic hydroperoxide sensing, whereas Cys126 is required for disulfide bond formation. Taken together, these phenotypic, genetic and biochemical data indicate that the response of C. violaceum to organic hydroperoxides is mediated by OhrA and OhrR. Finally, we demonstrated that oxidized OhrR, inactivated by intermolecular disulfide bond formation, is specifically regenerated via thiol-disulfide exchange by thioredoxin (but not other thiol reducing agents such as glutaredoxin, glutathione and lipoamide), providing a physiological reducing system for this thiol-based redox switch.