921 resultados para Stream ecosystems
Resumo:
If the land sector is to make significant contributions to mitigating anthropogenic greenhouse gas (GHG) emissions in coming decades, it must do so while concurrently expanding production of food and fiber. In our view, mathematical modeling will be required to provide scientific guidance to meet this challenge. In order to be useful in GHG mitigation policy measures, models must simultaneously meet scientific, software engineering, and human capacity requirements. They can be used to understand GHG fluxes, to evaluate proposed GHG mitigation actions, and to predict and monitor the effects of specific actions; the latter applications require a change in mindset that has parallels with the shift from research modeling to decision support. We compare and contrast 6 agro-ecosystem models (FullCAM, DayCent, DNDC, APSIM, WNMM, and AgMod), chosen because they are used in Australian agriculture and forestry. Underlying structural similarities in the representations of carbon flows though plants and soils in these models are complemented by a diverse range of emphases and approaches to the subprocesses within the agro-ecosystem. None of these agro-ecosystem models handles all land sector GHG fluxes, and considerable model-based uncertainty exists for soil C fluxes and enteric methane emissions. The models also show diverse approaches to the initialisation of model simulations, software implementation, distribution, licensing, and software quality assurance; each of these will differentially affect their usefulness for policy-driven GHG mitigation prediction and monitoring. Specific requirements imposed on the use of models by Australian mitigation policy settings are discussed, and areas for further scientific development of agro-ecosystem models for use in GHG mitigation policy are proposed.
Resumo:
Despite the growing attention innovation ecosystems have received from scholars and practitioners, rather little is known about the crucial birth and expansion phases that these ecosystems experience. Through a single case in the complex product system (CoPS) environment, this paper investigates the development of an innovation ecosystem between 1980 and 2007. The findings demonstrate that the ecosystem’s birth phase includes sub-phases, namely, invention and start-up, where the ecosystem is reconfigured to find the appropriate form and the proper actors to satisfy the first customer’s requirements. Moreover, the duration of the expansion phase is found to be remarkably long, suggesting that within the CoPS setting, expansion may also include two or more sub-phases.
Resumo:
With the introduction of the PCEHR (Personally Controlled Electronic Health Record), the Australian public is being asked to accept greater responsibility for the management of their health information. However, the implementation of the PCEHR has occasioned poor adoption rates underscored by criticism from stakeholders with concerns about transparency, accountability, privacy, confidentiality, governance, and limited capabilities. This study adopts an ethnographic lens to observe how information is created and used during the patient journey and the social factors impacting on the adoption of the PCEHR at the micro-level in order to develop a conceptual model that will encourage the sharing of patient information within the cycle of care. Objective: This study aims to firstly, establish a basic understanding of healthcare professional attitudes toward a national platform for sharing patient summary information in the form of a PCEHR. Secondly, the studies aims to map the flow of patient related information as it traverses a patient’s personal cycle of care. Thus, an ethnographic approach was used to bring a “real world” lens to information flow in a series of case studies in the Australian healthcare system to discover themes and issues that are important from the patient’s perspective. Design: Qualitative study utilising ethnographic case studies. Setting: Case studies were conducted at primary and allied healthcare professionals located in Brisbane Queensland between October 2013 and July 2014. Results: In the first dimension, it was identified that healthcare professionals’ concerns about trust and medico-legal issues related to patient control and information quality, and the lack of clinical value available with the PCEHR emerged as significant barriers to use. The second dimension of the study which attempted to map patient information flow identified information quality issues, clinical workflow inefficiencies and interoperability misconceptions resulting in duplication of effort, unnecessary manual processes, data quality and integrity issues and an over reliance on the understanding and communication skills of the patient. Conclusion: Opportunities for process efficiencies, improved data quality and increased patient safety emerge with the adoption of an appropriate information sharing platform. More importantly, large scale eHealth initiatives must be aligned with the value proposition of individual stakeholders in order to achieve widespread adoption. Leveraging an Australian national eHealth infrastructure and the PCEHR we offer a practical example of a service driven digital ecosystem suitable for co-creating value in healthcare.
Resumo:
The original pasture ecosystems of southern inland Queensland ranged from treeless grasslands on cracking clays through grassy woodlands of varying density on a great range of soil types to those competing at the dynamic edges of forests and scrubs. Fire, both wild and aboriginal-managed, was a major factor, along with rainfall extremes, in shaping the pastures and tree:grass balance. Seedling recruitment was driven by rainfall extremes, availability of germinable seed and growing space, with seed availability and space being linked to the timing and intensity of recent fires and rain. The impact of insects, diseases, severe wind and hailstorms on recruitment should not be underestimated. The more fertile soils had denser grass growth, greater fire frequency and thinner tree cover than infertile soils, except where trees were so dense that grass growth was almost eliminated. The pastures were dominated by perennial tussock grasses of mid-height but included a wide array of minor herbaceous species whose abundance was linked to soil type and recent seasonal conditions. Many were strongly perennial with Asteraceae, Fabaceae, Malvaceae, Cyperaceae and Goodeniaceae most common in an environment, which can experience effective rainfall at any time of year. The former grassland communities that are now productive farming lands are not easily returned to their original composition. However, conservation of remnant examples of original pasture types is very achievable provided tree density is controlled, prescribed burning and grazing are used and rigorous control of invasive, exotic species is undertaken. This should be done with a clear understanding that significant short-and medium-term fluctuations in botanical composition are normal.
Resumo:
The effects of the hydrological regime on temporal changes to physical characteristics of substratum habitat, sediment texture of surface sediments (<10 cm), were investigated in a sub-tropical headwater stream over four years. Surface discharge was measured together with vertical hydraulic gradient and groundwater depth in order to explore features of sediment habitat that extend beyond the streambed surface. Whilst the typical discharge pattern was one of intermittent base flows and infrequent flow events associated with monsoonal rain patterns, the study period also encompassed a drought and a one-in-a-hundred-year flood. Rainfall and discharge did not necessarily reflect the actual conditions in the stream. Although surface waters were persistent long after discharge ceased, the streambed was completely dry on several occasions. Shallow groundwater was present at variable depths throughout the study period, being absent only at the height of the drought. The streambed sediments were mainly gravels, sand and clay. Finer sediment fractions showed a marked change in grain size over time, although bedload movement was limited to a single high discharge event. In response to a low discharge regimen (drought), sediments characteristically showed non-normal distributions and were dominated by finer materials. A high-energy discharge event produced a coarsening of sands and a diminished clay fraction in the streambed. Particulate organic matter from sediments showed trends of build-up and decline with the high and low discharge regimes, respectively. Within the surface sediment intersticies three potential categories of invertebrate habitat were recognised, each with dynamic spatial and temporal boundaries.
Resumo:
Wayne Vogler and Nikki Owen recently published their paper 'Grader grass (Themeda quadrivalvis): changing savannah ecosystems' in Proceedings of the 16th Australian Weeds Conference. Grader grass is an invasive exotic 'high biomass' grass from India that is increasing its distribution in northern Australia. It is unpalatable and can dominate ecosystems, thereby decreasing grazing animal production, degrading conservation areas and increasing fire intensity and hazard. They studied aspects of its biology at a field site in north Queensland where the initial biomass of the grass layer was found to be 70% grader grass. Grader grass also produced 80% of the seed input into this ecosystem during the first growing season. These factors, in combination with a large viable seed bank and rapid germination at the start of the wet season, demonstrate the potential of grader grass to dominate and degrade the savannah ecosystems of northern Australia.
Resumo:
The critical stream power criterion may be used to describe the incipient motion of cohesionless particles of plane sediment beds. The governing equation relating ``critical stream power'' to ``shear Reynolds number'' is developed by using the present experimental data as well as the data from several other sources. Simultaneously, a resistance equation, relating the ``particle Reynolds number'' to the``shear Reynolds number'' is developed for plane sediment beds in wide channels with little or no transport. By making use of these relations, a procedure is developed to design plane sediment beds such that any two of the four design variables, including particle size, energy/friction slope, flow depth, and discharge per unit width in the channel should be known to predict the remaining two variables. Finally, a straightforward design procedure using design tables/design curves and analytical methods is presented to solve six possible design problems.
Resumo:
BACKGROUND OR CONTEXT The concept of 'Aboriginal engineering' has had little exposure in conventional engineering education programs, despite more than 40,000 years of active human engagement with the diverse Australian environment. The work reported in this paper began with the premise that Indigenous Student Support Through Indigenous Perspectives Embedded in Engineering Curricula (Goldfinch, et al 2013) would provide a clear and replicable means of encouraging Aboriginal teenagers to consider a career in engineering. Although that remains a key outcome of this OLT project, the direction taken by the research had led to additional insights and perspectives that have wide implications for engineering education more generally. There has only been passing reference to the achievements of Aboriginal engineering in current texts, and the very absence of such references was a prompt to explore further as our work developed. PURPOSE OR GOAL Project goals focused on curriculum-based change, including development of a model for inclusive teaching spaces, and study units employing key features of the model. As work progressed we found we needed to understand more about the principles and practices informing the development of pre-contact Aboriginal engineering strategies for sustaining life and society within the landscape of this often harsh continent. We also found ourselves being asked 'what engineering did Aboriginal cultures have?' Finding that there are no easy-to- access answers, we began researching the question, while continuing to engage with specific curriculum trials. APPROACH Stakeholders in the project had been identified as engineering educators, potential Aboriginal students and Aboriginal communities local to Universities involved in the project. We realised, early on, that at least one more group was involved - all the non-Aboriginal students in engineering classes. This realisation, coupled with recognition of the need to understand Aboriginal engineering as a set of viable, long term practices, altered the focus of our efforts. Rather than focusing primarily on finding ways to attract Aboriginal engineering students, the shift has been towards evolving ways of including knowledge about Aboriginal practices and principles in relevant engineering content. DISCUSSION This paper introduces the model resulting from the work of this project, explores its potential influence on engineering curriculum development and reports on implementation strategies. The model is a static representation of a dynamic and cyclic approach to engaging with Aboriginal engineering through contact with local communities in regard to building knowledge about the social beliefs underlying Aboriginal engineering principles and practices. Ways to engage engineering educators, students and the wider community are evolving through the continuing work of the project team and will be reported in more detail in the paper. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION While engineering may be considered by some to be agnostic in regard to culture and social issues, the work of this project is drawing attention to the importance of including such issues into curriculum materials at a number of levels of complexity. The paper will introduce and explore the central concepts of the research completed to date, as well as suggesting ways in which engineering educators can extend their knowledge and understanding of Aboriginal engineering principles in the context of their own specialisations.
Resumo:
Of the 70 cases of classical biological control for the protection of nature found in our review, there were fewer projects against insect targets (21) than against invasive plants (49), in part, because many insect biological control projects were carried out against agricultural pests, while nearly all projects against plants targeted invasive plants in natural ecosystems. Of 21 insect projects, 81% (17) provided benefits to protection of biodiversity, while 48% (10) protected products harvested from natural systems, and 5% (1) preserved ecosystem services, with many projects contributing to more than one goal. In contrast, of the 49 projects against invasive plants, 98% (48) provided benefits to protection of biodiversity, while 47% (23) protected products, and 25% (12) preserved ecosystem services, again with many projects contributing to several goals. We classified projects into complete control (pest generally no longer important), partial control (control in some areas but not others), and "in progress," for projects in development for which outcomes do not yet exist. For insects, of the 21 projects discussed, 59% (13) achieved complete control of the target pest, 18% (4) provided partial control, and 41% (9) are still in progress. By comparison, of the 49 invasive plant projects considered, 27% (13) achieved complete control, while 33% (16) provided partial control, and 47% (24) are still in progress. For both categories of pests, some projects' success ratings were scored twice when results varied by region. We found approximately twice as many projects directed against invasive plants than insects and that protection of biodiversity was the most frequent benefit of both insect and plant projects. Ecosystem service protection was provided in the fewest cases by either insect or plant biological control agents, but was more likely to be provided by projects directed against invasive plants, likely because of the strong effects plants exert on landscapes. Rates of complete success appeared to be higher for insect than plant targets (59% vs 27%), perhaps because most often herbivores gradually weaken, rather than outright kill, their hosts, which is not the case for natural enemies directed against pest insects. For both insect and plant biological control, nearly half of all projects reviewed were listed as currently in progress, suggesting that the use of biological control for the protection of wildlands is currently very active.
Resumo:
The StreamIt programming model has been proposed to exploit parallelism in streaming applications oil general purpose multicore architectures. The StreamIt graphs describe task, data and pipeline parallelism which can be exploited on accelerators such as Graphics Processing Units (GPUs) or CellBE which support abundant parallelism in hardware. In this paper, we describe a novel method to orchestrate the execution of if StreamIt program oil a multicore platform equipped with an accelerator. The proposed approach identifies, using profiling, the relative benefits of executing a task oil the superscalar CPU cores and the accelerator. We formulate the problem of partitioning the work between the CPU cores and the GPU, taking into account the latencies for data transfers and the required buffer layout transformations associated with the partitioning, as all integrated Integer Linear Program (ILP) which can then be solved by an ILP solver. We also propose an efficient heuristic algorithm for the work-partitioning between the CPU and the GPU, which provides solutions which are within 9.05% of the optimal solution on an average across the benchmark Suite. The partitioned tasks are then software pipelined to execute oil the multiple CPU cores and the Streaming Multiprocessors (SMs) of the GPU. The software pipelining algorithm orchestrates the execution between CPU cores and the GPU by emitting the code for the CPU and the GPU, and the code for the required data transfers. Our experiments on a platform with 8 CPU cores and a GeForce 8800 GTS 512 GPU show a geometric mean speedup of 6.94X with it maximum of 51.96X over it single threaded CPU execution across the StreamIt benchmarks. This is a 18.9% improvement over it partitioning strategy that maps only the filters that cannot be executed oil the GPU - the filters with state that is persistent across firings - onto the CPU.
Resumo:
Enteric fermentation of methane by ruminant animals represents a major source of anthropogenic methane production. Methane produced in this manner is released to the atmosphere where it is highly efficient at absorbing thermal radiation, which consequently increases the global surface temperature. Although many different strategies to control ruminant methane emissions have been considered, few are currently considered viable. Obligate and acultative methane oxidising bacteria (MOB) and anaerobic methane oxidising archaea (ANME) play a fundamental role in the carbon cycle by metabolising methane before it is released into the atmosphere. Because of this, methanotrophic microorganisms represent a novel biological control agent in mitigating ruminant methane emissions. This project aims to characterise methanotrophic microorganisms from a range of environments, and to subsequently determine the metabolic activity of these microorganisms under in vitro rumen-like conditions.
Resumo:
The large size, high trophic level and wide distribution of Hexanchiformes (cow and frilled sharks) should position this order as important apex predators in coastal and deep-water ecosystems. This review synthesizes available information on Hexanchiformes, including information not yet published, with the purpose of evaluating their conservation status and assessing their ecological roles in the dynamics of marine ecosystems. Comprising six species, this group has a wide global distribution, with members occurring from shallow coastal areas to depths of c. 2500 m. The limited information available on their reproductive biology suggests that they could be vulnerable to overexploitation (e.g. small litter sizes for most species and suspected long gestation periods). Most of the fishing pressure exerted on Hexanchiformes is in the form of commercial by-catch or recreational fishing. Comprehensive stock and impact assessments are unavailable for most species in most regions due to limited information on life history and catch and abundance time series. When hexanchiform species have been commercially harvested, however, they have been unable to sustain targeted fisheries for long periods. The potentially high vulnerability to intense fishing pressure warrants a conservative exploitation of this order until thorough quantitative assessments are conducted. At least some species have been shown to be significant apex predators in the systems they inhabit. Should Hexanchiformes be removed from coastal and deep-water systems, the lack of sympatric shark species that share the same resources suggests no other species would be capable of fulfilling their apex predator role in the short term. This has potential ecosystem consequences such as meso-predator release or trophic cascades. This review proposes some hypotheses on the ecology of Hexanchiformes and their role in ecosystem dynamics, highlighting the areas where critical information is required to stimulate research directions.
Resumo:
This study examines the application of digital ecosystems concepts to a biological ecosystem simulation problem. The problem involves the use of a digital ecosystem agent to optimize the accuracy of a second digital ecosystem agent, the biological ecosystem simulation. The study also incorporates social ecosystems, with a technological solution design subsystem communicating with a science subsystem and simulation software developer subsystem to determine key characteristics of the biological ecosystem simulation. The findings show similarities between the issues involved in digital ecosystem collaboration and those occurring when digital ecosystems interact with biological ecosystems. The results also suggest that even precise semantic descriptions and comprehensive ontologies may be insufficient to describe agents in enough detail for use within digital ecosystems, and a number of solutions to this problem are proposed.