927 resultados para Storage tanks.
Resumo:
The Underground Storage Tank program at the South Carolina Department of Health and Environmental Control publishes a biannual publication of compliance, technical, and financial information to supply outreach to tank owners, contractors, and the general public.
Resumo:
The Underground Storage Tank program at the South Carolina Department of Health and Environmental Control publishes a biannual publication of compliance, technical, and financial information to supply outreach to tank owners, contractors, and the general public.
Resumo:
The Torres Strait in northernmost Queensland, Australia, is subject to periodic outbreaks of dengue. A large outbreak of dengue 2 in 1996-97 affected five islands, resulting in 200 confirmed cases. On most of the affected islands, rainwater tanks were a common breeding site for vector mosquitoes. Rainwater tanks, wells and household containers filled with water are the most common breeding sites for dengue mosquitoes (Aedes aegypti), the primary vector of dengue in Queensland. We report on surveys conducted in February 2002 to measure the productivity of rainwater tanks and wells on Yorke Is. (Torres Strait), the first time the productivity of rainwater tanks has been measured in Australia. Of 60 rainwater tanks sampled, 10 had broken screens. Using a sticky emergence trap, 179 adult mosquitoes were collected, consisting of 63 Aedes scutellaris and 116 Culex quinquefasciatus. One unscreened tank produced 177 (99%) of the adults. A plankton net was used to sample 16 wells; 12 positive wells yielded 111 immature (larvae and pupae) mosquitoes, consisting of 57% and 43% Ae. scutellaris and Cx. quinquefasciatus, respectively. The apparent displacement of Ae. aegypti by Ae. scutellaris is discussed. Measures to reduce the likelihood of future dengue outbreaks are recommended.
Resumo:
The need for heating and cooling in buildings constitutes a considerable part of the total energy use in a country and reducing this need is of outmost importance in order to reach national and international goals for reducing energy use and emissions. One important way of reaching these goals is to increase the proportion of renewable energy used for heating and cooling of buildings. Perhaps the largest obstacle with this is the often occurring mismatch between the availability of renewable energy and the need for heating or cooling, hindering this energy to be used directly. This is one of the problems that can be solved by using thermal energy storage (TES) in order to save the heat or cold from when it is available to when it is needed. This thesis is focusing on the combination of TES techniques and buildings to achieve increased energy efficiency for heating and cooling. Various techniques used for TES as well as the combination of TES in buildings have been investigated and summarized through an extensive literature review. A survey of the Swedish building stock was also performed in order to define building types common in Sweden. Within the scope of this thesis, the survey resulted in the selection of three building types, two single family houses and one office building, out of which the two residential buildings were used in a simulation case study of passive TES with increased thermal mass (both sensible and latent). The second case study presented in the thesis is an evaluation of an existing seasonal borehole storage of solar heat for a residential community. In this case, real measurement data was used in the evaluation and in comparisons with earlier evaluations. The literature reviews showed that using TES opens up potential for reduced energy demand and reduced peak heating and cooling loads as well as possibilities for an increased share of renewable energy to cover the energy demand. By using passive storage through increased thermal mass of a building it is also possible to reduce variations in the indoor temperature and especially reduce excess temperatures during warm periods, which could result in avoiding active cooling in a building that would otherwise need it. The analysis of the combination of TES and building types confirmed that TES has a significant potential for increased energy efficiency in buildings but also highlighted the fact that there is still much research required before some of the technologies can become commercially available. In the simulation case study it was concluded that only a small reduction in heating demand is possible with increased thermal mass, but that the time with indoor temperatures above 24 °C can be reduced by up to 20%. The case study of the borehole storage system showed that although the storage system worked as planned, heat losses in the rest of the system as well as some problems with the system operation resulted in a lower solar fraction than projected. The work presented within this thesis has shown that TES is already used successfully for many building applications (e.g. domestic hot water stores and water tanks for storing solar heat) but that there still is much potential in further use of TES. There are, however, barriers such as a need for more research for some storage technologies as well as storage materials, especially phase change material storage and thermochemical storage.
Resumo:
The advent of the hydrogen economy has already been predicted but it does not represent a tangible reality yet. However, decarbonizing the global economy and particularly the energy sector is vital to limit global warming and reduce the incumbent environmental problems. Hydrogen is a promising zero-emission fuel that could replace traditional fossil fuels, playing a key role in the transition towards a more sustainable economy. At present, hydrogen-powered cars are already spread worldwide and the deployment of hydrogen buses seems to be the next goal in the decarbonization process of the transportation sector. In contrast with the undeniable benefits introduced by the use of this alternative fuel, given its hazardous properties, safety is a topic of high concern. The present study concerns the evaluation of the risks linked to the on board storage of hydrogen on hydrogen-powered buses in case of road accident. Currently, hydrogen can be stored on board as a high-pressure gas, as a cryogenic liquid or in cryo-compressed form. Those solutions are compared from a safety point of view. First, the final accidental scenarios that could follow the release of the fuel in case of a road crash are pointed out. Secondly, threshold values for the hazardous effects of each scenario are fixed and the corresponding damage distances are calculated thanks to the use of the software PHAST 8.4. Finally, indicators are quantified to compare the different options. Results are discussed to find out the safer solution and to evaluate whether the replacement of fossil fuels with hydrogen introduces new safety issues.
Resumo:
Sensory changes during the storage of coffee beans occur mainly due to lipid oxidation and are responsible for the loss of commercial value. This work aimed to verify how sensory changes of natural coffee and pulped natural coffee are related to the oxidative processes during 15 months of storage. During this period, changes in the content of free fatty acids (1.4-3.8 mg/g oil), TBARS values (8.8-10.2 nmol MDA/g), and carbonyl groups (2.6-3.5 nmol/mg of protein) occurred. The intensity of rested coffee flavour in the coffee brew increased (2.1-6.7) and 5-caffeoylquinic acid concentration decreased (5.2-4.6g/100g). Losses were also observed in seed viability, colour of the beans and cellular structure. All the results of the chemical analyses are coherent with the oxidative process that occurred in the grains during storage. Therefore, oxidation would be also responsible for the loss of cellular structure, seed viability and sensory changes.
Resumo:
Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.
Resumo:
Different storage conditions can induce changes in the colour and carotenoid profiles and levels in some fruits. The goal of this work was to evaluate the influence of low temperature storage on the colour and carotenoid synthesis in two banana cultivars: Prata and Nanicão. For this purpose, the carotenoids from the banana pulp were determined by HPLC-DAD-MS/MS, and the colour of the banana skin was determined by a colorimeter method. Ten carotenoids were identified, of which the major carotenoids were all-trans-lutein, all-trans-α-carotene and all-trans-β-carotene in both cultivars. The effect of the low temperatures was subjected to linear regression analysis. In cv. Prata, all-trans-α-carotene and all-trans-β-carotene were significantly affected by low temperature (p<0.01), with negative estimated values (β coefficients) indicating that during cold storage conditions, the concentrations of these carotenoids tended to decrease. In cv. Nanicão, no carotenoid was significantly affected by cold storage (p>0.05). The accumulation of carotenoids in this group may be because the metabolic pathways using these carotenoids were affected by storage at low temperatures. The colour of the fruits was not negatively affected by the low temperatures (p>0.05).
Resumo:
This study investigated the effects of the cement type and the water storage time on the push-out bond strength of a glass fiber post. Glass fiber posts (Fibrekor, Jeneric Pentron) were luted to post spaces using a self-cured resin cement (C&B Cement [CB]), a glass ionomer cement (Ketac Cem [KC]) or a resin-modified glass ionomer cement (GC FujiCEM [FC]) according to the manufacturers’ instructions. For each luting agent, the specimens were exposed to one of the following water storage times (n=5): 1 day (T1), 7 days (T7), 90 days (T90) and 180 days (T180). Push-out tests were performed after the storage times. Control specimens were not exposed to water storage, but subjected to the push-out test 10 min after post cementation. Data (in MPa) were analyzed by Kruskal-Wallis and Dunn`s test (α=0.05). Cement type and water storage time had a significant effect (p<0.05) on the push-out bond strength. CB showed significantly higher values of retention (p<0.05) than KC and FC, irrespective of the water storage time. Water storage increased significantly the push-out bond strength in T7 and T90, regardless of the cement type (p<0.05). The results showed that fiber posts luted to post spaces with the self-cured resin cement exhibited the best bonding performance throughout the 180-day water storage period. All cements exhibited a tendency to increase the bond strength after 7 and 90 days of water storage, decreasing thereafter.
Resumo:
Filleting yield of Nile tilapia Oreochromis niloticus (L.) is low (30%) and generates large amount of wastes that may turn into environmental and economic problem. However, these wastes can be used for the extraction of minced fish (MF) which can be used in the preparation of sausages. The objective of this study was to assess the quality of sausages prepared with 0, 20, 40, 60, 80 and 100% of MF from Nile tilapia filleting waste during storage at 0±0.3ºC. Alterations in the instrumental color (L*, a* and b*), lipid oxidation (TBARS), total volatile nitrogenous bases (TVB-N), pH, microbiological condition (pathogenic bacteria and aerobic psychrotrophic bacteria), and sensory attributes (color, odor, flavor, texture and overall acceptability) were evaluated for up to 40 days. The addition of MF to sausages increased TBARS values and decreases TVB-N, L*, a* and b* values. Acceptability of color attribute decreased with increasing MF; best flavor, texture and overall acceptability scores were registered for sausages containing 40 and 60% MF; best odor was registered for 100% MF. Pathogenic microorganisms were not detected, but decrease in pH and proliferation of aerobic psychrotrophic bacteria which, however, did not compromise sensory evaluation of sausages were registered throughout storage. Sausages prepared with MF from tilapia filleting waste have a shelf-life of 40 days when stored at 0±0.3ºC, and the maximum recommended MF inclusion to maintain good sensory quality is 60%.
Resumo:
According to some estimates, world's population growth is expected about 50% over the next 50 years. Thus, one of the greatest challenges faced by Engineering is to find effective options to food storage and conservation. Some researchers have investigated how to design durable buildings for storing and conserving food. Nowadays, developing concrete with mechanical resistance for room temperatures is a parameter that can be achieved easily. On the other hand, associating it to low temperature of approximately 35 °C negative requires less empiricism, being necessary a suitable dosage method and a careful selection of the material constituents. This ongoing study involves these parameters. The presented concrete was analyzed through non-destructive tests that examines the material properties periodically and verifies its physical integrity. Concrete with and without incorporated air were studied. The results demonstrated that both are resistant to freezing.
Resumo:
Snacks made by extrusion cooking of pure amaranth flour or mixtures of 80 per cent amaranth flour and 20 per centcorn grits or chickpea flour were developed to replace the traditional commercial ones with improved nutritional and functional quality. Pure amaranth snacks and the blended ones were flavored with salty and sweet flavors and evaluated for acceptability using a 9-point hedonic scale. The good acceptance observed for either salty or sweet flavored snacks indicated that they have characteristics to compete with similar commercial products. Acceptability of salty snacks increased with storage time at room temperature in BOPP (polypropylene bi-guided) packs whereas slightly decreased for the sweet ones. This type of storage proved to be very efficient for the conservation of the salty product and also suitable for the sweet ones
Resumo:
A gordura vegetal parcialmente hidrogenada tem sido utilizada na aromatização de snacks. Entretanto, o risco à saúde ocasionado pelo elevado consumo de ácidos graxos saturados e trans (AGT) vem estimulando o desenvolvimento de abordagens alternativas a essa gordura. Substituímos a gordura vegetal parcialmente hidrogenada (F) por óleo de canola (O) na aromatização de snacks. Snacks com diferentes níveis de O foram produzidos, embalados e armazenados em temperatura ambiente durante vinte semanas. Monitoramos o perfil de ácidos graxos, o teor de substâncias reativas ao TBA (TBARS), a força de cisalhamento e a aceitabilidade sensorial. A substituição total reduziu o teor de ácidos graxos saturados em 72,5 por cento, em comparação aos snacks comerciais. Os snacks eram inicialmente isentos de AGT, porém, após 8 semanas, esses compostos surgiram, havendo aumento gradual durante o período de armazenamento. Entretanto, estes níveis mantiveram-se inferiores aos observados em snacks comercializados. Também foram observados baixos teores de TBARS e estabilidade da força de cisalhamento. Snacks aromatizados com F ou O foram igualmente bem aceitos durante as vinte semanas de armazenamento. É possível desenvolver snacks com teores reduzidos de ácidos graxos saturados e trans, estáveis durante o armazenamento, mantendo a elevada aceitabilidade sensorial típica deste tipo de produto
Resumo:
Equatorial podzols are soils characterized by thick sandy horizons overlying more clayey horizons. Organic matter produced in the topsoil is transferred in depth through the sandy horizons and accumulate at the transition, at a depth varying from 1 to more than 3 m, forming deep horizons rich in organic matter (Bh horizons). Although they cover great surfaces in the equatorial zone, these soils are still poorly known. Studying podzols from Amazonia, we found out that the deep Bh horizons in poorly drained podzol areas have a thickness higher than 1m and store unexpected amounts of carbon. The average for the studied area was 66.7 +/- 5.8 kgCm(-2) for the deep Bh and 86.8 +/- 7.1 kgCm(-2) for the whole profile. Extrapolating to the podzol areas of the whole Amazonian basin has been possible thanks to digital maps, giving an order of magnitude around 13.6 +/- 1.1 PgC, at least 12.3 PgC higher than previous estimates. This assessment should be refined by additional investigations, not only in Amazonia but in all equatorial areas where podzols have been identified. Because of the lack of knowledge on the quality and behaviour of the podzol organic matter, the question of the feedback between the climate and the equatorial podzol carbon cycle is open.