860 resultados para Stochastic demand


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a stochastic mixed-integer linear approach to deal with a short-term unit commitment problem with uncertainty on a deregulated electricity market that includes day-ahead bidding and bilateral contracts. The proposed approach considers the typically operation constraints on the thermal units and a spinning reserve. The uncertainty is due to the electricity prices, which are modeled by a scenario set, allowing an acceptable computation. Moreover, emission allowances are considered in a manner to allow for the consideration of environmental constraints. A case study to illustrate the usefulness of the proposed approach is presented and an assessment of the cost for the spinning reserve is obtained by a comparison between the situation with and without spinning reserve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applied Mathematical Modelling, Vol.33

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a quantity-setting duopoly model, and we study the decision to move first or second, by assuming that the firms produce differentiated goods and that there is some demand uncertainty. The competitive phase consists of two periods, and in either period, the firms can make a production decision that is irreversible. As far as the firms are allowed to choose (non-cooperatively) the period they make the decision, we study the circumstances that favour sequential rather than simultaneous decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effects of trade with a foreign firm and privatization of the domestic pubUc firm on an incentive for the domestic firm to reduce costs by undertaking R&D investment, under demand uncertainty. We suppose that the domestic firm is less efficient than the foreign firm. However, the domestic firm can lower its marginal costs by conducting cost-reducing R&D investment. We examine the impacts of entry of a foreign firm, and the effects of demand uncertainty, on decisions upon cost-reducing R&D investment by the domestic firm and how these affect the domestic welfare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stochastic programming approach is proposed in this paper for the development of offering strategies for a wind power producer. The optimization model is characterized by making the analysis of several scenarios and treating simultaneously two kinds of uncertainty: wind power and electricity market prices. The approach developed allows evaluating alternative production and offers strategies to submit to the electricity market with the ultimate goal of maximizing profits. An innovative comparative study is provided, where the imbalances are treated differently. Also, an application to two new realistic case studies is presented. Finally, conclusions are duly drawn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho, desenvolvido sob a orientação do Prof. Jaime Gabriel Silva, centra-se na procura e aplicação de metodologias de planeamento com apoio de ferramentas informáticas de análise de risco, que permitem realizar, em tempo útil, o cálculo dos prazos resultantes de inúmeras combinações possíveis associadas à incerteza das durações das atividades, recorrendo a modelos estocásticos. O trabalho aborda inicialmente o contexto da Gestão na Construção, com particular enfase na Gestão do Risco. Nessa fase inicial, fez-se também um pequeno inquérito a profissionais com diferentes níveis de responsabilidade organizacional e empresas do setor. A parte fundamental do trabalho, incide nos procedimentos a adotar na elaboração do planeamento de empreitadas. Nesta parte do trabalho, introduzem-se os conceitos da análise de risco com recurso a uma ferramenta informática de apoio, o @Risk, que permite a utilização do Método de Monte Carlo, para obtenção de resultados num contexto de uma tomada de decisão baseada no risco. Refira-se que houve vários contactos com o fornecedor do programa, que permitiram tirar partido de outro programa da Palisade, Evolver, direcionado para otimização matemática, podendo ser utilizado, por exemplo, na perspetiva da minimização dos custos, o que pode interessar pela relação destes com as opções adotadas na elaboração do planeamento de empreendimentos. Finalmente, toma-se um exemplo real do planeamento de uma empreitada em execução à data da realização deste trabalho, onde se aplicaram os conceitos desenvolvidos no trabalho, confrontando os resultados com o andamento da obra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Doutoramento em Matemática: Processos Estocásticos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is on the self-scheduling problem for a thermal power producer taking part in a pool-based electricity market as a price-taker, having bilateral contracts and emission-constrained. An approach based on stochastic mixed-integer linear programming approach is proposed for solving the self-scheduling problem. Uncertainty regarding electricity price is considered through a set of scenarios computed by simulation and scenario-reduction. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. A requirement on emission allowances to mitigate carbon footprint is modelled by a stochastic constraint. Supply functions for different emission allowance levels are accessed in order to establish the optimal bidding strategy. A case study is presented to illustrate the usefulness and the proficiency of the proposed approach in supporting biding strategies. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastic behavior of the demand consumption jointly used with other available resources such as distributed generation (DG) can play a crucial role for the success of smart grids. The intensive use of Distributed Energy Resources (DER) and the technical and contractual constraints result in large-scale non linear optimization problems that require computational intelligence methods to be solved. This paper proposes a Particle Swarm Optimization (PSO) based methodology to support the minimization of the operation costs of a virtual power player that manages the resources in a distribution network and the network itself. Resources include the DER available in the considered time period and the energy that can be bought from external energy suppliers. Network constraints are considered. The proposed approach uses Gaussian mutation of the strategic parameters and contextual self-parameterization of the maximum and minimum particle velocities. The case study considers a real 937 bus distribution network, with 20310 consumers and 548 distributed generators. The obtained solutions are compared with a deterministic approach and with PSO without mutation and Evolutionary PSO, both using self-parameterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distributed, agent-based intelligent system models and simulates a smart grid using physical players and computationally simulated agents. The proposed system can assess the impact of demand response programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand response can play a very relevant role in the context of power systems with an intensive use of distributed energy resources, from which renewable intermittent sources are a significant part. More active consumers participation can help improving the system reliability and decrease or defer the required investments. Demand response adequate use and management is even more important in competitive electricity markets. However, experience shows difficulties to make demand response be adequately used in this context, showing the need of research work in this area. The most important difficulties seem to be caused by inadequate business models and by inadequate demand response programs management. This paper contributes to developing methodologies and a computational infrastructure able to provide the involved players with adequate decision support on demand response programs and contracts design and use. The presented work uses DemSi, a demand response simulator that has been developed by the authors to simulate demand response actions and programs, which includes realistic power system simulation. It includes an optimization module for the application of demand response programs and contracts using deterministic and metaheuristic approaches. The proposed methodology is an important improvement in the simulator while providing adequate tools for demand response programs adoption by the involved players. A machine learning method based on clustering and classification techniques, resulting in a rule base concerning DR programs and contracts use, is also used. A case study concerning the use of demand response in an incident situation is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent changes in the operation and planning of power systems have been motivated by the introduction of Distributed Generation (DG) and Demand Response (DR) in the competitive electricity markets' environment, with deep concerns at the efficiency level. In this context, grid operators, market operators, utilities and consumers must adopt strategies and methods to take full advantage of demand response and distributed generation. This requires that all the involved players consider all the market opportunities, as the case of energy and reserve components of electricity markets. The present paper proposes a methodology which considers the joint dispatch of demand response and distributed generation in the context of a distribution network operated by a virtual power player. The resources' participation can be performed in both energy and reserve contexts. This methodology contemplates the probability of actually using the reserve and the distribution network constraints. Its application is illustrated in this paper using a 32-bus distribution network with 66 DG units and 218 consumers classified into 6 types of consumers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In future power systems, in the smart grid and microgrids operation paradigms, consumers can be seen as an energy resource with decentralized and autonomous decisions in the energy management. It is expected that each consumer will manage not only the loads, but also small generation units, heating systems, storage systems, and electric vehicles. Each consumer can participate in different demand response events promoted by system operators or aggregation entities. This paper proposes an innovative method to manage the appliances on a house during a demand response event. The main contribution of this work is to include time constraints in resources management, and the context evaluation in order to ensure the required comfort levels. The dynamic resources management methodology allows a better resources’ management in a demand response event, mainly the ones of long duration, by changing the priorities of loads during the event. A case study with two scenarios is presented considering a demand response with 30 min duration, and another with 240 min (4 h). In both simulations, the demand response event proposes the power consumption reduction during the event. A total of 18 loads are used, including real and virtual ones, controlled by the presented house management system.