975 resultados para Steam curing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-phase computational fluid dynamics modelling is used to investigate the magnitude of different contributions to the wet steam losses in a three-stage model low pressure steam turbine. The thermodynamic losses (due to irreversible heat transfer across a finite temperature difference) and the kinematic relaxation losses (due to the frictional drag of the drops) are evaluated directly from the computational fluid dynamics simulation using a concept based on entropy production rates. The braking losses (due to the impact of large drops on the rotor) are investigated by a separate numerical prediction. The simulations show that in the present case, the dominant effect is the thermodynamic loss that accounts for over 90% of the wetness losses and that both the thermodynamic and the kinematic relaxation losses depend on the droplet diameter. The numerical results are brought into context with the well-known Baumann correlation, and a comparison with available measurement data in the literature is given. The ability of the numerical approach to predict the main wetness losses is confirmed, which permits the use of computational fluid dynamics for further studies on wetness loss correlations. © IMechE 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-stage low-pressure model steam turbine at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) was used to study the impact of three different steam inlet temperatures on the homogeneous condensation process and the resulting wetness topology. The droplet spectrum as well as the particle number concentration were measured in front of the last stage using an optical-pneumatic probe. At design load, condensation starts inside the stator of the second stage. A change in the steam inlet temperature is able to shift the location of condensation onset within the blade row up- or downstream and even into adjoining blade passages, which leads to significantly different local droplet sizes and wetness fractions due to different local expansion rates. The measured results are compared to steady three-dimensional computational fluid dynamics calculations. The predicted nucleation zones could be largely confirmed by the measurements. Although the trend of measured and calculated droplet size across the span is satisfactory, there are considerable differences between the measured and computed droplet spectrum and wetness fractions. © IMechE 2013 Reprints and permissions: sagepub.co.uk/ journalsPermissions.nav.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass gasification is an important method to obtain renewable hydrogen, However, this technology still stagnates in a laboratory scale because of its high-energy consumption. In order to get maximum hydrogen yield and decrease energy consumption, this study applies a self-heated downdraft gasifier as the reactor and uses char as the catalyst to study the characteristics of hydrogen production from biomass gasification. Air and oxygen/steam are utilized as the gasifying agents. The experimental results indicate that compared to biomass air gasification, biomass oxygen/steam gasification improves hydrogen yield depending on the volume of downdraft gasifier, and also nearly doubles the heating value of fuel gas. The maximum lower heating value of fuel gas reaches 11.11 MJ/ N m(3) for biomass oxygen/steam gasification. Over the ranges of operating conditions examined, the maximum hydrogen yield reaches 45.16 g H-2/kg biomass. For biomass oxygen/steam gasification, the content of H-2 and CO reaches 63.27-72.56%, while the content Of H2 and CO gets to 52.19-63.31% for biomass air gasification. The ratio of H-2/CO for biomass oxygen/steam gasification reaches 0.70-0.90, which is lower than that of biomass air gasification, 1.06-1.27. The experimental and comparison results prove that biomass oxygen/steam gasification in a downdraft gasifier is an effective, relatively low energy consumption technology for hydrogen-rich gas production.