999 resultados para Statistical thermodynamics.
Resumo:
Cancer poses an undeniable burden to the health and wellbeing of the Australian community. In a recent report commissioned by the Australian Institute for Health and Welfare(AIHW, 2010), one in every two Australians on average will be diagnosed with cancer by the age of 85, making cancer the second leading cause of death in 2007, preceded only by cardiovascular disease. Despite modest decreases in standardised combined cancer mortality over the past few decades, in part due to increased funding and access to screening programs, cancer remains a significant economic burden. In 2010, all cancers accounted for an estimated 19% of the country's total burden of disease, equating to approximately $3:8 billion in direct health system costs (Cancer Council Australia, 2011). Furthermore, there remains established socio-economic and other demographic inequalities in cancer incidence and survival, for example, by indigenous status and rurality. Therefore, in the interests of the nation's health and economic management, there is an immediate need to devise data-driven strategies to not only understand the socio-economic drivers of cancer but also facilitate the implementation of cost-effective resource allocation for cancer management...
Resumo:
The selection of optimal camera configurations (camera locations, orientations etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we introduce a statistical formulation of the optimal selection of camera configurations as well as propose a Trans-Dimensional Simulated Annealing (TDSA) algorithm to effectively solve the problem. We compare our approach with a state-of-the-art method based on Binary Integer Programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than 2 alternative heuristics designed to deal with the scalability issue of BIP.
Resumo:
The need for a house rental model in Townsville, Australia is addressed. Models developed for predicting house rental levels are described. An analytical model is built upon a priori selected variables and parameters of rental levels. Regression models are generated to provide a comparison to the analytical model. Issues in model development and performance evaluation are discussed. A comparison of the models indicates that the analytical model performs better than the regression models.
Resumo:
The deformation of rocks is commonly intimately associated with metamorphic reactions. This paper is a step towards understanding the behaviour of fully coupled, deforming, chemically reacting systems by considering a simple example of the problem comprising a single layer system with elastic-power law viscous constitutive behaviour where the deformation is controlled by the diffusion of a single chemical component that is produced during a metamorphic reaction. Analysis of the problem using the principles of non-equilibrium thermodynamics allows the energy dissipated by the chemical reaction-diffusion processes to be coupled with the energy dissipated during deformation of the layers. This leads to strain-rate softening behaviour and the resultant development of localised deformation which in turn nucleates buckles in the layer. All such diffusion processes, in leading to Herring-Nabarro, Coble or “pressure solution” behaviour, are capable of producing mechanical weakening through the development of a “chemical viscosity”, with the potential for instability in the deformation. For geologically realistic strain rates these chemical feed-back instabilities occur at the centimetre to micron scales, and so produce structures at these scales, as opposed to thermal feed-back instabilities that become important at the 100–1000 m scales.
Resumo:
Anisotropic damage distribution and evolution have a profound effect on borehole stress concentrations. Damage evolution is an irreversible process that is not adequately described within classical equilibrium thermodynamics. Therefore, we propose a constitutive model, based on non-equilibrium thermodynamics, that accounts for anisotropic damage distribution, anisotropic damage threshold and anisotropic damage evolution. We implemented this constitutive model numerically, using the finite element method, to calculate stress–strain curves and borehole stresses. The resulting stress–strain curves are distinctively different from linear elastic-brittle and linear elastic-ideal plastic constitutive models and realistically model experimental responses of brittle rocks. We show that the onset of damage evolution leads to an inhomogeneous redistribution of material properties and stresses along the borehole wall. The classical linear elastic-brittle approach to borehole stability analysis systematically overestimates the stress concentrations on the borehole wall, because dissipative strain-softening is underestimated. The proposed damage mechanics approach explicitly models dissipative behaviour and leads to non-conservative mud window estimations. Furthermore, anisotropic rocks with preferential planes of failure, like shales, can be addressed with our model.
Resumo:
Vacuum circuit breaker (VCB) overvoltage failure and its catastrophic failures during shunt reactor switching have been analyzed through computer simulations for multiple reignitions with a statistical VCB model found in the literature. However, a systematic review (SR) that is related to the multiple reignitions with a statistical VCB model does not yet exist. Therefore, this paper aims to analyze and explore the multiple reignitions with a statistical VCB model. It examines the salient points, research gaps and limitations of the multiple reignition phenomenon to assist with future investigations following the SR search. Based on the SR results, seven issues and two approaches to enhance the current statistical VCB model are identified. These results will be useful as an input to improve the computer modeling accuracy as well as the development of a reignition switch model with point-on-wave controlled switching for condition monitoring
Resumo:
Matched case–control research designs can be useful because matching can increase power due to reduced variability between subjects. However, inappropriate statistical analysis of matched data could result in a change in the strength of association between the dependent and independent variables or a change in the significance of the findings. We sought to ascertain whether matched case–control studies published in the nursing literature utilized appropriate statistical analyses. Of 41 articles identified that met the inclusion criteria, 31 (76%) used an inappropriate statistical test for comparing data derived from case subjects and their matched controls. In response to this finding, we developed an algorithm to support decision-making regarding statistical tests for matched case–control studies.
Resumo:
When a community already torn by an event such as a prolonged war, is then hit by a natural disaster, the negative impact of this subsequent disaster in the longer term can be extremely devastating. Natural disasters further damage already destabilised and demoralised communities, making it much harder for them to be resilient and recover. Communities often face enormous challenges during the immediate recovery and the subsequent long term reconstruction periods, mainly due to the lack of a viable community involvement process. In post-war settings, affected communities, including those internally displaced, are often conceived as being completely disabled and are hardly ever consulted when reconstruction projects are being instigated. This lack of community involvement often leads to poor project planning, decreased community support, and an unsustainable completed project. The impact of war, coupled with the tensions created by the uninhabitable and poor housing provision, often hinders the affected residents from integrating permanently into their home communities. This paper outlines a number of fundamental factors that act as barriers to community participation related to natural disasters in post-war settings. The paper is based on a statistical analysis of, and findings from, a questionnaire survey administered in early 2012 in Afghanistan.
Resumo:
Background: Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult owing to species biology and behavioural characteristics. The design of robust sampling programmes should be based on an underlying statistical distribution that is sufficiently flexible to capture variations in the spatial distribution of the target species. Results: Comparisons are made of the accuracy of four probability-of-detection sampling models - the negative binomial model,1 the Poisson model,1 the double logarithmic model2 and the compound model3 - for detection of insects over a broad range of insect densities. Although the double log and negative binomial models performed well under specific conditions, it is shown that, of the four models examined, the compound model performed the best over a broad range of insect spatial distributions and densities. In particular, this model predicted well the number of samples required when insect density was high and clumped within experimental storages. Conclusions: This paper reinforces the need for effective sampling programs designed to detect insects over a broad range of spatial distributions. The compound model is robust over a broad range of insect densities and leads to substantial improvement in detection probabilities within highly variable systems such as grain storage.
Resumo:
Operational modal analysis (OMA) is prevalent in modal identifi cation of civil structures. It asks for response measurements of the underlying structure under ambient loads. A valid OMA method requires the excitation be white noise in time and space. Although there are numerous applications of OMA in the literature, few have investigated the statistical distribution of a measurement and the infl uence of such randomness to modal identifi cation. This research has attempted modifi ed kurtosis to evaluate the statistical distribution of raw measurement data. In addition, a windowing strategy employing this index has been proposed to select quality datasets. In order to demonstrate how the data selection strategy works, the ambient vibration measurements of a laboratory bridge model and a real cable-stayed bridge have been respectively considered. The analysis incorporated with frequency domain decomposition (FDD) as the target OMA approach for modal identifi cation. The modal identifi cation results using the data segments with different randomness have been compared. The discrepancy in FDD spectra of the results indicates that, in order to fulfi l the assumption of an OMA method, special care shall be taken in processing a long vibration measurement data. The proposed data selection strategy is easy-to-apply and verifi ed effective in modal analysis.
Resumo:
This thesis explored the development of statistical methods to support the monitoring and improvement in quality of treatment delivered to patients undergoing coronary angioplasty procedures. To achieve this goal, a suite of outcome measures was identified to characterise performance of the service, statistical tools were developed to monitor the various indicators and measures to strengthen governance processes were implemented and validated. Although this work focused on pursuit of these aims in the context of a an angioplasty service located at a single clinical site, development of the tools and techniques was undertaken mindful of the potential application to other clinical specialties and a wider, potentially national, scope.
Resumo:
Nitrous oxide emissions from soil are known to be spatially and temporally volatile. Reliable estimation of emissions over a given time and space depends on measuring with sufficient intensity but deciding on the number of measuring stations and the frequency of observation can be vexing. The question of low frequency manual observations providing comparable results to high frequency automated sampling also arises. Data collected from a replicated field experiment was intensively studied with the intention to give some statistically robust guidance on these issues. The experiment had nitrous oxide soil to air flux monitored within 10 m by 2.5 m plots by automated closed chambers under a 3 h average sampling interval and by manual static chambers under a three day average sampling interval over sixty days. Observed trends in flux over time by the static chambers were mostly within the auto chamber bounds of experimental error. Cumulated nitrous oxide emissions as measured by each system were also within error bounds. Under the temporal response pattern in this experiment, no significant loss of information was observed after culling the data to simulate results under various low frequency scenarios. Within the confines of this experiment observations from the manual chambers were not spatially correlated above distances of 1 m. Statistical power was therefore found to improve due to increased replicates per treatment or chambers per replicate. Careful after action review of experimental data can deliver savings for future work.
Resumo:
This thesis explored the knowledge and reasoning of young children in solving novel statistical problems, and the influence of problem context and design on their solutions. It found that young children's statistical competencies are underestimated, and that problem design and context facilitated children's application of a wide range of knowledge and reasoning skills, none of which had been taught. A qualitative design-based research method, informed by the Models and Modeling perspective (Lesh & Doerr, 2003) underpinned the study. Data modelling activities incorporating picture story books were used to contextualise the problems. Children applied real-world understanding to problem solving, including attribute identification, categorisation and classification skills. Intuitive and metarepresentational knowledge together with inductive and probabilistic reasoning was used to make sense of data, and beginning awareness of statistical variation and informal inference was visible.
Resumo:
This chapter argues for the need to restructure children’s statistical experiences from the beginning years of formal schooling. The ability to understand and apply statistical reasoning is paramount across all walks of life, as seen in the variety of graphs, tables, diagrams, and other data representations requiring interpretation. Young children are immersed in our data-driven society, with early access to computer technology and daily exposure to the mass media. With the rate of data proliferation have come increased calls for advancing children’s statistical reasoning abilities, commencing with the earliest years of schooling (e.g., Langrall et al. 2008; Lehrer and Schauble 2005; Shaughnessy 2010; Whitin and Whitin 2011). Several articles (e.g., Franklin and Garfield 2006; Langrall et al. 2008) and policy documents (e.g., National Council of Teachers ofMathematics 2006) have highlighted the need for a renewed focus on this component of early mathematics learning, with children working mathematically and scientifically in dealing with realworld data. One approach to this component in the beginning school years is through data modelling (English 2010; Lehrer and Romberg 1996; Lehrer and Schauble 2000, 2007)...
Resumo:
Statistical methodology was applied to a survey of time-course incidence of four viruses (alfalfa mosaic virus, clover yellow vein virus, subterranean clover mottle virus and subterranean clover red leaf virus) in improved pastures in southern regions of Australia. -from Authors