977 resultados para State feedback
Resumo:
For two two-level atoms coupled to a single Bosonic mode that is driven and heavily damped, the steady state can be entangled by resonantly driving the system [S. Schneider and G. J. Milburn, Phys. Rev. A 65, 042107 (2002)]. We present a scheme to significantly increase the steady-state entanglement by using homodyne-mediated feedback, in which the Bosonic mode is that of an electromagnetic cavity, the output of which is measured and the resulting homodyne photocurrent is used to modulate the field driving the qubits. Such feedback can increase the nonlinear response to both the decoherence process of the two-qubit system and the coherent evolution of individual qubits. We present the properties of the entangled states using the SO(3) Q function.
Resumo:
For quantum systems with linear dynamics in phase space much of classical feedback control theory applies. However, there are some questions that are sensible only for the quantum case: Given a fixed interaction between the system and the environment what is the optimal measurement on the environment for a particular control problem? We show that for a broad class of optimal (state- based) control problems ( the stationary linear-quadratic-Gaussian class), this question is a semidefinite program. Moreover, the answer also applies to Markovian (current-based) feedback.
Resumo:
Circuit QED is a promising solid-state quantum computing architecture. It also has excellent potential as a platform for quantum control-especially quantum feedback control-experiments. However, the current scheme for measurement in circuit QED is low efficiency and has low signal-to-noise ratio for single-shot measurements. The low quality of this measurement makes the implementation of feedback difficult, and here we propose two schemes for measurement in circuit QED architectures that can significantly improve signal-to-noise ratio and potentially achieve quantum-limited measurement. Such measurements would enable the implementation of quantum feedback protocols and we illustrate this with a simple entanglement-stabilization scheme.
Resumo:
In this letter, the polarization properties of a random fiber laser operating via Raman gain and random distributed feedback owing to Rayleigh scattering are investigated for the first time. Using polarized pump, the partially polarized generation is obtained with a generation spectrum exhibiting discrete narrow spectral features contrary to the smooth spectrum observed for the depolarized pump. The threshold, output power, degree of polarization and the state of polarization (SOP) of the lasing can be significantly influenced by the SOP of the pump. Fine narrow spectral components are also sensitive to the SOP of the pump wave. Furthermore, we found that random lasing's longitudinal power distributions are different in the case of polarized and depolarized pumping that results in considerable reduction of the generation slope efficiency for the polarized radiation. Our results indicate that polarization effects play an important role on the performance of the random fiber laser. This work improves the understanding of the physics of random lasing in fibers and makes a step forward towards the establishment of the vector model of random fiber lasers.
Resumo:
A complex Ginzburg-Landau equation subjected to local and global time-delay feedback terms is considered. In particular, multiple oscillatory solutions and their properties are studied. We present novel results regarding the disappearance of limit cycle solutions, derive analytical criteria for frequency degeneration, amplitude degeneration, frequency extrema. Furthermore, we discuss the influence of the phase shift parameter and show analytically that the stabilization of the steady state and the decay of all oscillations (amplitude death) cannot happen for global feedback only. Finally, we explain the onset of traveling wave patterns close to the regime of amplitude death.
Resumo:
Feedback is considered one of the most effective mechanisms to aid learning and achievement (Hattie and Timperley, 2007). However, in past UK National Student Surveys, perceptions of academic feedback have been consistently rated lower by final year undergraduate students than other aspects of the student experience (Williams and Kane, 2009). For pharmacy students in particular, Hall and colleagues recently reported that almost a third of students surveyed were dissatisfied with feedback and perceived feedback practice to be inconsistent (Hall et al, 2012). Aims of the Workshop: This workshop has been designed to explore current academic feedback practices in pharmacy education across a variety of settings and cultures as well as to create a toolkit for pharmacy academics to guide their approach to feedback. Learning Objectives: 1. Discuss and characterise academic feedback practices provided by pharmacy academics to pharmacy students in a variety of settings and cultures. 2. Develop academic feedback strategies for a variety of scenarios. 3. Evaluate and categorise feedback strategies with use of a feedback matrix. Description of Workshop Activities: Introduction to workshop and feedback on pre-reading exercise (5 minutes). Activity 1: A short presentation on theoretical models of academic feedback. Evidence of feedback in pharmacy education (10 minutes). Activity 2: Discussion of feedback approaches in participants’ organisations for differing educational modalities. Consideration of the following factors will be undertaken: experiential v. theoretical education, formative v. summative assessment, form of assessment and the effect of culture (20 minutes, large group discussion). Activity 3: Introduction of a feedback matrix (5 minutes). Activity 4: Development of an academic feedback toolkit for pharmacy education. Participants will be divided into 4 groups and will discuss how to provide effective feedback for 2 scenarios. Feedback strategies will be categorised with the feedback matrix. Results will be presented back to the workshop group (20 minutes, small group discussion, 20 minutes, large group presentation). Summary (10 minutes). Additional Information: Pre-reading: Participants will be provided with a list of definitions for academic feedback and will be asked to rank the definitions in order of perceived relevance to pharmacy education. References Archer, J. C. (2010). State of the science in health professional education: effective feedback. Medical education, 44(1), 101-108. Hall, M., Hanna, L. A., & Quinn, S. (2012). Pharmacy Students’ Views of Faculty Feedback on Academic Performance. American journal of pharmaceutical education, 76(1). Hattie, J., & Timperley, H. (2007). The power of feedback. Review of educational research, 77(1), 81-112. Medina, M. S. (2007). Providing feedback to enhance pharmacy students’ performance. American Journal of Health-System Pharmacy, 64(24), 2542-2545.
Resumo:
Much has been written in the educational psychology literature about effective feedback and how to deliver it. However, it is equally important to understand how learners actively receive, engage with, and implement feedback. This article reports a systematic review of the research evidence pertaining to this issue. Through an analysis of 195 outputs published between 1985 and early 2014, we identified various factors that have been proposed to influence the likelihood of feedback being used. Furthermore, we identified diverse interventions with the common aim of supporting and promoting learners' agentic engagement with feedback processes. We outline the various components used in these interventions, and the reports of their successes and limitations. Moreover we propose a novel taxonomy of four recipience processes targeted by these interventions. This review and taxonomy provide a theoretical basis for conceptualizing learners' responsibility within feedback dialogues and for guiding the strategic design and evaluation of interventions. Receiving feedback on one's skills and understanding is an invaluable part of the learning process, benefiting learners far more than does simply receiving praise or punishment (Black & Wiliam, 1998 Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & Practice, 5, 7–74. doi:10.1080/0969595980050102[Taylor & Francis Online]; Hattie & Timperley, 2007 Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77, 81–112. doi:10.3102/003465430298487[CrossRef], [Web of Science ®]). Inevitably, the benefits of receiving feedback are not uniform across all circumstances, and so it is imperative to understand how these gains can be maximized. There is increasing consensus that a critical determinant of feedback effectiveness is the quality of learners' engagement with, and use of, the feedback they receive. However, studies investigating this engagement are underrepresented in academic research (Bounds et al., 2013 Bounds, R., Bush, C., Aghera, A., Rodriguez, N., Stansfield, R. B., & Santeen, S. A. (2013). Emergency medicine residents' self-assessments play a critical role when receiving feedback. Academic Emergency Medicine, 20, 1055–1061. doi:10.1111/acem.12231[CrossRef], [PubMed], [Web of Science ®]), which leaves a “blind spot” in our understanding (Burke, 2009 Burke, D. (2009). Strategies for using feedback students bring to higher education. Assessment & Evaluation in Higher Education, 34, 41–50. doi:10.1080/02602930801895711[Taylor & Francis Online], [Web of Science ®]). With this blind spot in mind, the present work sets out to systematically map the research literature concerning learners' proactive recipience of feedback. We use the term “proactive recipience” here to connote a state or activity of engaging actively with feedback processes, thus emphasizing the fundamental contribution and responsibility of the learner (Winstone, Nash, Rowntree, & Parker, in press Winstone, N. E., Nash, R. A., Rowntree, J., & Parker, M. (in press). ‘It'd be useful, but I wouldn't use it’: Barriers to university students' feedback seeking and recipience. Studies in Higher Education. doi: 10.1080/03075079.2015.1130032[Taylor & Francis Online]). In other words, just as Reeve and Tseng (2011 Reeve, J., & Tseng, M. (2011). Agency as a fourth aspect of student engagement during learning activities. Contemporary Educational Psychology, 36, 257–267. doi:10.1016/j.cedpsych.2011.05.002[CrossRef], [Web of Science ®]) defined “agentic engagement” as a “student's constructive contribution into the flow of the instruction they receive” (p. 258), likewise proactive recipience is a form of agentic engagement that involves the learner sharing responsibility for making feedback processes effective.
Resumo:
We consider the suppression of spatiotemporal chaos in the complex GinzburgLandau equation by a combined global and local time-delay feedback. Feedback terms are implemented as a control scheme, i.e., they are proportional to the difference between the time-delayed state of the system and its current state. We perform a linear stability analysis of uniform oscillations with respect to space-dependent perturbations and compare with numerical simulations. Similarly, for the fixed-point solution that corresponds to amplitude death in the spatially extended system, a linear stability analysis with respect to space-dependent perturbations is performed and complemented by numerical simulations. © 2010 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Limited information exists on the effects of temporary functional deafferentation (TFD) on brain activity after peripheral nerve block (PNB) in healthy humans. Increasingly, resting-state functional connectivity (RSFC) is being used to study brain activity and organization. The purpose of this study was to test the hypothesis that TFD through PNB will influence changes in RSFC plasticity in central sensorimotor functional brain networks in healthy human participants. METHODS: The authors achieved TFD using a supraclavicular PNB model with 10 healthy human participants undergoing functional connectivity magnetic resonance imaging before PNB, during active PNB, and during PNB recovery. RSFC differences among study conditions were determined by multiple-comparison-corrected (false discovery rate-corrected P value less than 0.05) random-effects, between-condition, and seed-to-voxel analyses using the left and right manual motor regions. RESULTS: The results of this pilot study demonstrated disruption of interhemispheric left-to-right manual motor region RSFC (e.g., mean Fisher-transformed z [effect size] at pre-PNB 1.05 vs. 0.55 during PNB) but preservation of intrahemispheric RSFC of these regions during PNB. Additionally, there was increased RSFC between the left motor region of interest (PNB-affected area) and bilateral higher order visual cortex regions after clinical PNB resolution (e.g., Fisher z between left motor region of interest and right and left lingual gyrus regions during PNB, -0.1 and -0.6 vs. 0.22 and 0.18 after PNB resolution, respectively). CONCLUSIONS: This pilot study provides evidence that PNB has features consistent with other models of deafferentation, making it a potentially useful approach to investigate brain plasticity. The findings provide insight into RSFC of sensorimotor functional brain networks during PNB and PNB recovery and support modulation of the sensory-motor integration feedback loop as a mechanism for explaining the behavioral correlates of peripherally induced TFD through PNB.
Resumo:
The transistor laser is a unique three-port device that operates simultaneously as a transistor and a laser. With quantum wells incorporated in the base regions of heterojunction bipolar transistors, the transistor laser possesses advantageous characteristics of fast base spontaneous carrier lifetime, high differential optical gain, and electrical-optical characteristics for direct “read-out” of its optical properties. These devices have demonstrated many useful features such as high-speed optical transmission without the limitations of resonance, non-linear mixing, frequency multiplication, negative resistance, and photon-assisted switching. To date, all of these devices operate as multi-mode lasers without any type of wavelength selection or stabilizing mechanisms. Stable single-mode distributed feedback diode laser sources are important in many applications including spectroscopy, as pump sources for amplifiers and solid-state lasers, for use in coherent communication systems, and now as TLs potentially for integrated optoelectronics. The subject of this work is to expand the future applications of the transistor laser by demonstrating the theoretical background, process development and device design necessary to achieve singlelongitudinal- mode operation in a three-port transistor laser. A third-order distributed feedback surface grating is fabricated in the top emitter AlGaAs confining layers using soft photocurable nanoimprint lithography. The device produces continuous wave laser operation with a peak wavelength of 959.75 nm and threshold current of 13 mA operating at -70 °C. For devices with cleaved ends a side-mode suppression ratio greater than 25 dB has been achieved.
Resumo:
Despite major progress, currently available treatment options for patients suffering from schizophrenia remain suboptimal. Antipsychotic medication is one such option, and is helpful in acute phases of the disease. However, antipsychotics cause significant side-effects that often require additional medication, and can even trigger the discontinuation of treatment. Taken together, along with the fact that 20-30% of patients are medication-resistant, it is clear that new medical care options should be developed for patients with schizophrenia. Besides medication, an emerging option to treat psychiatric symptoms is through the use of neurofeedback. This technique has proven efficacy for other disorders and, more importantly, has also proven to be feasible in patients with schizophrenia. One of the major advantages of this approach is that it allows for the influence of brain states that otherwise would be inaccessible; i.e. the physiological markers underlying psychotic symptoms. EEG resting-state microstates are a very interesting electrophysiological marker of schizophrenia symptoms. Precisely, a specific class of resting-state microstates, namely microstate class D, has consistently been found to show a temporal shortening in patients with schizophrenia compared to controls, and this shortening is correlated with the presence positive psychotic symptoms. Under the scope of biological psychiatry, appropriate treatment of psychotic symptoms can be expected to modify the underlying physiological markers accompanying behavioral manifestations of a disease. We reason that if abnormal temporal parameters of resting-state microstates seem to be related to positive symptoms in schizophrenia, regulating this EEG feature might be helpful as a treatment for patients. The goal of this thesis was to prove the feasibility of microstate class D contribution self-regulation via neurofeedback. Given that no other study has attempted to regulate microstates via neurofeedback, we first tested its feasibility in a population of healthy subjects. In the first paper we describe the methodological characteristics of the neurofeedback protocol and its implementation. Neurofeedback performance was assessed by means of linear mixed effects modeling, which provided a complete profile of the neurofeedback’s training response within and between-subjects. The protocol included 20 training sessions, and each session contained three conditions: baseline (resting-state) and two active conditions: training (auditory feedback upon self-regulation performance) and transfer (self-regulation with no feedback). With linear modeling we obtained performance indices for each of them as follows: baseline carryover (baseline increments time-dependent) and learning and aptitude for each of the active conditions. Learning refers to the increase/decrease of the microstate class D contribution, time-dependent during each active condition, and aptitude refers to the constant difference of the microstate class D contribution between each active condition and baseline independent of time. The indices provided are discussed in terms of tailoring neurofeedback treatment to individual profiles so that it can be applied in future studies or clinical practice. In our sample of participants, neurofeedback proved feasible, as all participants at least showed positive results in one of the aforementioned learning indices. Furthermore, between-subjects we observed that the contribution of microstate class D across-sessions increased by 0.42% during baseline, 1.93% during training trials, and 1.83% during transfer. This range is expected to be effective in treating psychotic symptoms in patients. In the second paper presented in this thesis, we explored the possible predictors of neurofeedback success among psychological variables measured with questionnaires. An interesting finding was the negative correlation between “motivational incongruence” and some of the neurofeedback performance indices. Even though this finding requires replication, we discuss it in terms of the interfering effects of incompatible psychological processes with neurofeedback training requirements. In the third paper, we present a meta-analysis on all available studies that have related resting-state microstate abnormalities and schizophrenia. We obtained medium effect sizes for two microstate classes, namely C and D. Combining the meta-analysis results with the fact that microstate class D abnormalities are correlated with the presence of positive symptoms in patients with schizophrenia, these results add further support for the training of this precise microstate. Overall, the results obtained in this study encourage the implementation of this protocol in a population of patients with schizophrenia. However, future studies will have to show whether patients will be able to successfully self-regulate the contribution of microstate class D and, if so, whether this regulation will have an impact on symptomatology.
Resumo:
Reinforcement Learning (RL) provides a powerful framework to address sequential decision-making problems in which the transition dynamics is unknown or too complex to be represented. The RL approach is based on speculating what is the best decision to make given sample estimates obtained from previous interactions, a recipe that led to several breakthroughs in various domains, ranging from game playing to robotics. Despite their success, current RL methods hardly generalize from one task to another, and achieving the kind of generalization obtained through unsupervised pre-training in non-sequential problems seems unthinkable. Unsupervised RL has recently emerged as a way to improve generalization of RL methods. Just as its non-sequential counterpart, the unsupervised RL framework comprises two phases: An unsupervised pre-training phase, in which the agent interacts with the environment without external feedback, and a supervised fine-tuning phase, in which the agent aims to efficiently solve a task in the same environment by exploiting the knowledge acquired during pre-training. In this thesis, we study unsupervised RL via state entropy maximization, in which the agent makes use of the unsupervised interactions to pre-train a policy that maximizes the entropy of its induced state distribution. First, we provide a theoretical characterization of the learning problem by considering a convex RL formulation that subsumes state entropy maximization. Our analysis shows that maximizing the state entropy in finite trials is inherently harder than RL. Then, we study the state entropy maximization problem from an optimization perspective. Especially, we show that the primal formulation of the corresponding optimization problem can be (approximately) addressed through tractable linear programs. Finally, we provide the first practical methodologies for state entropy maximization in complex domains, both when the pre-training takes place in a single environment as well as multiple environments.
Resumo:
Ochnaceae s.str. (Malpighiales) are a pantropical family of about 500 species and 27 genera of almost exclusively woody plants. Infrafamilial classification and relationships have been controversial partially due to the lack of a robust phylogenetic framework. Including all genera except Indosinia and Perissocarpa and DNA sequence data for five DNA regions (ITS, matK, ndhF, rbcL, trnL-F), we provide for the first time a nearly complete molecular phylogenetic analysis of Ochnaceae s.l. resolving most of the phylogenetic backbone of the family. Based on this, we present a new classification of Ochnaceae s.l., with Medusagynoideae and Quiinoideae included as subfamilies and the former subfamilies Ochnoideae and Sauvagesioideae recognized at the rank of tribe. Our data support a monophyletic Ochneae, but Sauvagesieae in the traditional circumscription is paraphyletic because Testulea emerges as sister to the rest of Ochnoideae, and the next clade shows Luxemburgia+Philacra as sister group to the remaining Ochnoideae. To avoid paraphyly, we classify Luxemburgieae and Testuleeae as new tribes. The African genus Lophira, which has switched between subfamilies (here tribes) in past classifications, emerges as sister to all other Ochneae. Thus, endosperm-free seeds and ovules with partly to completely united integuments (resulting in an apparently single integument) are characters that unite all members of that tribe. The relationships within its largest clade, Ochnineae (former Ochneae), are poorly resolved, but former Ochninae (Brackenridgea, Ochna) are polyphyletic. Within Sauvagesieae, the genus Sauvagesia in its broad circumscription is polyphyletic as Sauvagesia serrata is sister to a clade of Adenarake, Sauvagesia spp., and three other genera. Within Quiinoideae, in contrast to former phylogenetic hypotheses, Lacunaria and Touroulia form a clade that is sister to Quiina. Bayesian ancestral state reconstructions showed that zygomorphic flowers with adaptations to buzz-pollination (poricidal anthers), a syncarpous gynoecium (a near-apocarpous gynoecium evolved independently in Quiinoideae and Ochninae), numerous ovules, septicidal capsules, and winged seeds with endosperm are the ancestral condition in Ochnoideae. Although in some lineages poricidal anthers were lost secondarily, the evolution of poricidal superstructures secured the maintenance of buzz-pollination in some of these genera, indicating a strong selective pressure on keeping that specialized pollination system.
Resumo:
Very high field (29)Si-NMR measurements using a fully (29)Si-enriched URu(2)Si(2) single crystal were carried out in order to microscopically investigate the hidden order (HO) state and adjacent magnetic phases in the high field limit. At the lowest measured temperature of 0.4 K, a clear anomaly reflecting a Fermi surface instability near 22 T inside the HO state is detected by the (29)Si shift, (29)K(c). Moreover, a strong enhancement of (29)K(c) develops near a critical field H(c) ≃ 35.6 T, and the ^{29}Si-NMR signal disappears suddenly at H(c), indicating the total suppression of the HO state. Nevertheless, a weak and shifted (29)Si-NMR signal reappears for fields higher than H(c) at 4.2 K, providing evidence for a magnetic structure within the magnetic phase caused by the Ising-type anisotropy of the uranium ordered moments.
Resumo:
This is an ecological, analytical and retrospective study comprising the 645 municipalities in the State of São Paulo, the scope of which was to determine the relationship between socioeconomic, demographic variables and the model of care in relation to infant mortality rates in the period from 1998 to 2008. The ratio of average annual change for each indicator per stratum coverage was calculated. Infant mortality was analyzed according to the model for repeated measures over time, adjusted for the following correction variables: the city's population, proportion of Family Health Programs (PSFs) deployed, proportion of Growth Acceleration Programs (PACs) deployed, per capita GDP and SPSRI (São Paulo social responsibility index). The analysis was performed by generalized linear models, considering the gamma distribution. Multiple comparisons were performed with the likelihood ratio with chi-square approximate distribution, considering a significance level of 5%. There was a decrease in infant mortality over the years (p < 0.05), with no significant difference from 2004 to 2008 (p > 0.05). The proportion of PSFs deployed (p < 0.0001) and per capita GDP (p < 0.0001) were significant in the model. The decline of infant mortality in this period was influenced by the growth of per capita GDP and PSFs.