970 resultados para Startle Blink Modulation
Resumo:
Previously, it was demonstrated that the heme/heme oxygenase (HO)/carbon monoxide (CO) pathway inhibits neutrophil recruitment during the inflammatory response. Herein, we addressed whether the inhibitory effect of the HO pathway on neutrophil adhesion and migration involves the reduction of intracellular adhesion molecule type (ICAM)-1 and beta(2)-integrin expression. Mice pretreated with a specific inhibitor of inducible HO (HO-1), zinc protoporphyrin (ZnPP) IX, exhibit enhanced neutrophil adhesion and migration induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS). These findings are associated with an increase in ICAM-1 expression on mesentery venular endothelium. In accordance, HO-1 inhibition did not enhance LPS-induced neutrophil migration and adhesion in ICAM-1-deficient mice. Furthermore, the treatment with a CO donor (dimanganese decacarbonyl, DMDC) that inhibits adhesion and migration of the neutrophils, reduced LPS-induced ICAM-1 expression. Moreover, neither DMDC nor ZnPP IX treatments changed LPS-induced beta(2)-integrin expression on neutrophils. The effect of CO on ICAM-1 expression seems to be dependent on soluble guanylate cyclase (sGC) activation, since 1H-(1,2,4)oxadiazolo (4,3-a)quinoxalin-1-one (sGC inhibitor) prevented the observed CO effects. Finally, it was observed that the nitric oxide (NO) anti-inflammatory effects on ICAM-1 expression appear to be indirectly mediated by HO-1 activation, since the inhibition of HO-1 prevented the inhibitory effect of the NO donor (S-nitroso-N-acetylpenicillamine) on LPS-induced ICAM-1 expression. Taken together, these results suggest that CO inhibits ICAM-1 expression on endothelium by a mechanism dependent on sGC activation. Thus, our findings identify the HO-1/CO/guanosine 3`5`-cyclic monophosphate pathway as a potential target for the development of novel pharmacotherapy to control neutrophil migration in inflammatory diseases.
Resumo:
Injury triggers inflammatory responses and tissue repair. Several treatments are currently in use to accelerate healing: however, more efficient formulations are still needed for specific injuries. Since unsaturated fatty acids modulate immune responses, we aimed to evaluate their therapeutic effects on wound healing. Skin wounds were induced in BALB/c mice and treated for 5 days with n-3, n-9 fatty acids or vehicle (control). n-9 treated mice presented smaller wounds than control and n-3 at 120 h post-surgery (p.s.). Collagen III mRNA,TIMP1 and MMP9 were significantly elevated in n-9 group compared to n-3 or vehicle at 120 h p.s. Among the inflammatory mediators studied we found that IL-10, TNF-alpha and IL-17 were also higher in n-9 treated group compared to n-3 or vehicle at 120 h p.s. Interestingly, COX2 had decreased expression on wound tissue treated with n-9. Inflammatory infiltrate analysis revealed diminished frequency of CD4(+), CD8(+) and CD11b(+) cells in n-9 wounds at 24 and 120 h p.s., which was not related to cell death, since in vitro apoptosis experiments did not show any cell damage after fatty acids administration. These results suggested that unsaturated fatty acids, specifically n-9, modulate the inflammation in the wound and enhance reparative response in vivo. n-9 may be a useful tool in the treatment of cutaneous wounds. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
In this study, we investigated the hematopoietic response of rats pretreated with CV and exposed to the impact of acute escapable, inescapable or psychogenical stress on responsiveness to an in vivo challenge with Listeria monocytogenes. No consistent changes were observed after exposure to escapable footshock. Conversely, the impact of uncontrollable stress (inescapable and psychogenical) was manifested by an early onset and increased severity and duration of myrelossuppression produced by the infection. Small size CFU-CM colonies and increased numbers of clusters were observed, concurrently to a greater expansion in the more mature population of bone marrow granulocytes. No differences were observed between the responses of both uncontrollable stress regimens. CV prevented the myelossuppression caused by stress/infection due to increased numbers of CFU-GM in the bone marrow. Colonies of cells tightly packed, with a very condensed nucleus; in association with a greater expansion in the more immature population of bone marrow granulocytes were observed. Investigation of the production of colony-stimulating factors revealed increased colony-stimulating activity (CSA) in the serum of normal and infected/stressed rats treated with the algae. CV treatment restored/enhanced the changes produced by stress/infection in total and differential bone marrow and peripheral cells counts. Further studies demonstrated that INF-gamma is significantly reduced, whereas IL-10 is significantly increased after exposure to Uncontrollable stress. Treatment with CV significantly increased INF-gamma levels and diminished the levels of IL-10. Uncontrollable stress reduced the protection afforded by CV to a lethal dose of L. monocytogenes, with survival rates being reduced from (50%) in infected rats to 20% in infected/stressed rats. All together, our results suggest Chlorella treatment as an effective tool for the prophylaxis of post-stress myelossupression, including the detrimental effect of stress on the course and outcome of infections. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: Prolactin (PRL), a peptide hormone produced by the pituitary gland, is involved in the interaction between the neuroendocrine and immune system. Since dopamine receptor antagonists increase serum levels of PRL, both PRL and dopamine receptors might be involved in the modulation of macrophage activity, providing means of communication between the nervous and immune systems. This study evaluated the effects of PRL and the dopamine antagonist domperidone (DOMP) on macrophage activity of female rats. Methods: Oxidative burst and phagocytosis of peritoneal macrophages were evaluated by flow cytometry. Samples of peritoneal liquid from female rats were first incubated with PRL (10 and 100 nM) for different periods. The same procedure was repeated to evaluate the effects of DOMP (10 and 100 nM). Results: In vitro incubation of macrophages with 10 nM DOMP decreased oxidative burst, after 30 min, whereas the PMA-induced burst was decreased by DOMP 10 nM after 2 and 4 h. Treatment with PRL (10 and 100 nM) for 30 min decreased oxidative burst and rate of phagocytosis (10 nM). After 2 h of incubation, 10 nM PRL decreased oxidative burst and phagocytosis intensity, but increased the rate of phagocytosis. On the other hand, after 4 h, PRL 10 and 100 nM increased oxidative burst and the rate of phagocytosis, but decreased intensity of phagocytosis. Conclusions: These observations suggest that macrophage functions are regulated by an endogenous dopaminergic tone. Our data also suggest that both PRL and dopamine exert their action by acting directly on the peritoneal macrophage. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Objective: Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are a family of enzymes strongly involved in the regulation of cell growth and differentiation. Since there is no information concerning the relationship between osteoblastic differentiation and LMW-PTP expression/activity, we investigated its involvement during human osteoblast-like cells (hFOB 1.19) differentiation. It is known that LMW-PTP is regulated by an elegant redox mechanism, so we also observed how the osteoblastic differentiation affected the reduced glutathione levels. Design: hFOB 1.19 cells were cultured in DMEM/F12 up to 35 days. The osteoblast phenotype acquisition was monitored by measuring alkaline phosphatase activity and mineralized nodule formation by Von Kossa staining. LMW-PTP activity and expression were measured using the p-nitrophenylphosphate as substrate and Western blotting respectively. Crystal violet assay determined the cell number in each experimental point. Glutathione level was determined by both HPLC and DNTB assays. Results: LMW-PTP modulation was coincident with the osteoblastic differentiation biomarkers, such as alkaline phosphatase activity and presence of nodules of mineralization in Vitro. Likewise LMW-PTP, the reduced glutathione-dependent microenvironment was modulated during osteoblastic differentiation. During this process, LMW-PTP expression/activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day (p < 0.001) of culturing, decreasing thereafter. Conclusions: Our results clearly suggest that LMW-PTP expression/activity was rigorously modulated during osteoblastic differentiation, possibly in response to the redox status of the cells, since it seems to depend on suitable levels of reduced glutathione. in this way, we pointed out LMW-PTP as an important signaling molecule in osteoblast biology and bone formation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Periodontal diseases are infectious diseases, in which periodontopathogens trigger chronic inflammatory and immune responses that lead to tissue destruction. It occurs through the generation of metalloproteinases and the activation of bone resorption mechanisms. Anti-inflammatory cytokines such as IL-10 seem to attenuate periodontal tissue destruction through the induction of tissue inhibitors of metalloproteinases (TIMPs) and the inhibitor of osteoclastogenesis osteoprotegerin (OPG). A high individual variation in levels of IL-10 mRNA is verified in periodontitis patients, which is possibly determined by genetic polymorphisms. In this study, the IL-10 promoter -592C/A single nucleotide polymorphism ( SNP), which is associated with a decrease in IL-10 production, was analyzed by RFLP in 116 chronic periodontitis (CP) patients and 173 control (C) subjects, and the IL-10, TIMPs, and OPG mRNA expression levels in diseased gingival tissues were determined by real-time-PCR. The IL-10-592 SNP CA (P=0.0012/OR=2.4/CI:1.4-4.1), AA (P=0.0458/OR=2.3/CI:1.1-4.9), and CA+AA (P=0.0006/OR=2.4/CI: 1.4-3.4) genotypes and the allele A (P=0.0036/OR=1.7/CI:1.2-2.4) were found to be significantly more prevalent in the CP group when compared with control subjects. Both CA and AA genotypes were associated with lower levels of IL-10, TIMP-3, and OPG mRNA expression in diseased periodontal tissues and were also associated with disease severity as mean pocket depth. Taken together, the results presented here demonstrate that IL10-592 SNP is functional in CP, being associated with lower levels of IL-10 mRNA expression, which is supposed to consequently decrease the expression of the downstream genes TIMP-3 and OPG, and influence periodontal disease outcome. J. Leukoc. Biol. 84: 1565-1573; 2008.
Resumo:
Strong evidence obtained from in vivo and ex-vivo studies suggests the existence of interaction between dopaminergic and nitrergic systems. Some of the observations suggest a possible implication of nitric oxide (NO) in dopamine (DA) uptake mechanism. The present work investigated the interaction between both systems by examining the effect of an NO donor, sodium nitroprusside (SNP), associated with the indirect DA agonist, amphetamine (AMPH) on tritiated DA uptake in cultures of embryonic mesencephalic neurons. Consistent with the literature, both AMPH (1, 3 and 10 mu M) and SNP (300 mu M and 1 mM) inhibited DA uptake in a dose-dependent manner. In addition, the inhibition of DA uptake by AMPH (1 and 3 mu M) was significantly increased by the previous addition of SNP (300 mu M). The implication of NO in this interaction was supported by the fact that the free radical scavenger N-acetyl-L-Cysteine (500 mu M) significantly increased DA uptake and completely abolished the effect of SNP, leaving unaffected that from AMPH on DA uptake. Further, double-labeling immunohistochemistry showed the presence of tyrosine hydroxylase-(TH, marker for dopaminergic neurons) and neuronal NO synthase- (nNOS, marker for NO containing neurons) expressing neurons in mesencephalic cultures. Some dopaminergic neurons also express nNOS giving further support for a pre-synaptic interaction between both systems. This is the first work demonstrating in mesencephalic cultured neurons a combined effect of an NO donor and an indirect DA agonist on specific DA uptake. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Introduction: Cognitive and attentional deficits in schizophrenia include impairment of the sensorimotor filter as measured by prepulse inhibition (PPI). In this way, the study of animals that naturally present low PPI responses could be a useful approach for screening new antipsychotic drugs. Several pieces of evidence suggest that dopamine and nitric oxide (NO) can modulate PPI but their role in those animals is unknown. Objectives: The aim of this study was to investigate the role of dopamine and NO in Wistar rats with naturally low PPI response. Methods: Male Wistar rats with low PPI responses received an i.p. injection of the antipsychotics haloperidol (0.1, 0.3 or 1 mg/kg) or clozapine (0.5, 1.5 or 5 mg/kg), the anxiolytic diazepam (1 or 3 mg/kg) or the NO synthase (NOS) inhibitors, N(G)- nitro-L-arginine (L-NOARG; 40 mg/kg, acutely or sub-chronically) or 7-Nitroindazole (7-NI; 3, 10 or 30 mg/kg). All animals were submitted to the PPI test 1 h after injection. Striatal and cortical dopamine, DOPAC, and noradrenaline levels of rats with low PPI responses were compared to rats with normal PPI responses. Results: We found increased levels of catecholamines on the striatum and prefrontal cortex of Wistar rats with low PPI. In these animals, both antipsychotics, typical and atypical, and NOS inhibitors significantly increased PPI. Conclusion: Taken together, our findings suggest that the low PPI phenotype may be driven by an over-active catecholamine system. Additionally, our results corroborate the hypothesis of dopamine and NO interaction on PPI modulation and suggest that Wistar rats with low PPI may represent an interesting non-pharmacological model to evaluate new potential antipsychotics. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The locus coeruleus (LC) is a noradrenergic nucleus that plays an important role in the ventilatory response to hypercapnia. This nucleus is densely innervated by serotonergic fibers and contains high density of serotonin (5-HT) receptors, including 5-HT(1A) and 5-HT(2). We assessed the possible modulation of respiratory response to hypercapnia by 5-HT, through 5-HT(1A) and 5-HT(2) receptors, in the LC. To this end, we determined the concentrations of 5-HT and its metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) in the LC after hypercapnic exposure. Pulmonary ventilation (V(E), plethysmograph) was measured before and after unilateral microinjection (100 nL) of WAY-100635 (5-HT(1A) antagonist, 5.6 and 56 mM), 8-OHDPAT (5-HT(1A/7) agonist, 7 and 15 mM), Ketanserin (5-HT(2A) antagonist, 3.7 and 37 mM), or (+/-)-2,5-dimethoxy-4-iodoamphetaminehydrochloride (DOI; 5-HT(2A) agonist, 6.7 and 67 mM) into the LC, followed by a 60-min period of 7% CO(2) exposure. Hypercapnia increased 5-HTIAA levels and 5-HIAA/5-HT ratio within the LC. WAY-100635 and 8-OHDPAT intra-LC decreased the hypercapnic ventilatory response due to a lower tidal volume. Ketanserin increased CO(2) drive to breathing and DOI caused the opposite response, both acting on tidal volume. The current results provide evidence of increased 5-HT release during hypercapnia in the LC and that 5-HT presents an inhibitory modulation of the stimulatory role of LC on hypercapnic ventilatory response, acting through postsynaptic 5-HT(2A) receptors in this nucleus. In addition, hypercapnic responses seem to be also regulated by presynaptic 5-HT(1A) receptors in the LC.
Resumo:
Tonic immobility (TI) is a temporary state of profound motor inhibition induced by situations that generate intense fear, with the objective of protecting an animal from attacks by predators. A preliminary study by our group demonstrated that microinjection into the basolateral nucleus of the amygdala (BLA) of an agonist to 5-HT(1A) and 5-HT(2) receptors promoted a decrease in TI duration. In the current study, the effects of GABAergic stimulation of the BLA and the possible interaction between GABA(A) and 5-HT(2) receptors on TI modulation were investigated. Observation revealed that GABAergic agonist muscimol (0.26 nmol) reduced the duration of TI episodes, while microinjection of the GABAergic antagonist bicuculline (1 nmol) increased TI duration. Additionally, microinjection of 5-HT(2) agonist receptors (alpha-methyl-5-HT, 0.32 nmol) into the BLA decreased TI duration, an effect reversed by pretreatment with bicuculline (at the dose that had no effect per se, 0.2 nmol). Moreover, the activation of GABA(A) and 5-HT(2) receptors in the BLA did not alter the spontaneous motor activity in the open field test. These experiments demonstrated that the activation of GABA(A) and 5-HT(2) receptors of the BLA possibly produce a reduction in unconditioned fear that decreases the TI duration in guinea pigs, but this is not due to increased spontaneous motor activity, which could affect a TI episode nonspecifically. Furthermore, these results suggest an interaction between GABAergic and serotoninergic mechanisms mediated by GABA(A) and 5-HT(2) receptors. In addition, the GABAergic circuit of the BLA presents a tonic inhibitory influence on TI duration. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Modulations in the excitability of spinal reflex pathways during passive rhythmic movements of the lower limb have been demonstrated by a number of previous studies [4]. Less emphasis has been placed on the role of supraspinal pathways during passive movement, and on tasks involving the upper limb. In the present study, transcranial magnetic stimulation (TMS) was delivered to subjects while undergoing passive flexion-extension movements of the contralateral wrist. Motor evoked potentials (MEPs) of flexor carpi radialis (FCR) and abductor pollicus brevis (APB) muscles were recorded. Stimuli were delivered in eight phases of the movement cycle during three different frequencies of movement. Evidence of marked modulations in pathway excitability was found in the MEP amplitudes of the FCR muscle, with responses inhibited and facilitated from static values in the extension and flexion phases, respectively. The results indicated that at higher frequencies of movement there was greater modulation in pathway excitability. Paired-pulse TMS (sub-threshold conditioning) at short interstimulus intervals revealed modulations in the extent of inhibition in MEP amplitude at high movement frequencies. In the APE muscle, there was some evidence of phasic modulations of response amplitude, although the effects were less marked than those observed in FCR. It is speculated that these modulatory effects are mediated via Ia afferent pathways and arise as a consequence of the induced forearm muscle shortening and lengthening. Although the level at which this input influences the corticomotoneuronal pathway is difficult to discern, a contribution from cortical regions is suggested. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Purpose: The phenotype of vascular smooth muscle cells (SMCs) is altered in several arterial pathologies, including the neointima formed after acute arterial injury. This study examined the time course of this phenotypic change in relation to changes in the amount and distribution of matrix glycosaminoglycans. Methods: The immunochemical staining of heparan sulphates (HS) and chondroitin sulphates (CS) in the extracellular matrix of the arterial wall was examined at early points after balloon catheter injury of the rabbit carotid artery. SMC phenotype was assessed by means of ultrastructural morphometry of the cytoplasmic volume fraction of myofilaments. The proportions of cell and matrix components in the media were analyzed with similar morphometric techniques. Results: HS and CS were shown in close association with SMCs of the uninjured arterial media as well as being more widespread within the matrix. Within 6 hours after arterial injury, there was loss of the regular pericellular distribution of both HS and CS, which was associated with a significant expansion in the extracellular space. This preceded the change in ultrastructural phenotype of the SMCs. The glycosaminoglycan loss was most exaggerated at 4 days, after which time the HS and CS reappeared around the medial SMCs. SMCs of the recovering media were able to rapidly replace their glycosaminoglycans, whereas SMCs of the developing neointima failed to produce HS as readily as they produced CS. Conclusions: These studies indicate that changes in glycosaminoglycans of the extracellular matrix precede changes in SMC phenotype after acute arterial injury. In the recovering arterial media, SMCs replace their matrix glycosaminoglycans rapidly, whereas the newly established neointima fails to produce similar amounts of heparan sulphates.
Resumo:
The relationships between reproductive condition, level of reproductive investment and adrenocortical modulation to capture stress in marine turtles form the basis of this study. When subjected to either capture or ecological stressors, nesting marine turtles have demonstrated adrenocortical responses that are both small in magnitude, and slow in responsiveness. These observations were further investigated to determine whether this minimal stress response was a physiological strategy to maximize reproductive investment in adult green Chelonia mydas and hawksbill Eretmochelys imbricata turtles. Female green and hawksbill turtles exhibited a decrease in adrenocortical responsiveness with progressive reproductive condition. Breeding turtles exhibited most suppression of their adrenocortical response to capture compared to both non-breeding and pre-breeding female counterparts. Nesting green turtles maintained a suppressed adrenocortical response to capture throughout the nesting season despite decreased reproductive investment. In contrast, male green and hawksbill turtles were less able to modulate their corticosterone (B) response to acute capture stress. During breeding, male turtles possessed significantly greater adrenocortical responses to capture than females. These results could indicate that the large reproductive investment necessary for female marine turtle reproduction might underlie the marked decrease in adrenocortical responsiveness. This hormonal mechanism could function as one strategy by which female marine turtles maximize their current reproductive event, even though under certain situations this mechanism could entail costs to female survival.