833 resultados para Staff Turnover
Resumo:
OBJECTIVE To verify the adequacy of the professional nursing staff in the emergency room of a university hospital and to evaluate the association between categories of risk classification triage with the Fugulin Patient Classification System. METHOD The classification of patients admitted into the emergency room was performed for 30 consecutive days through the methodology proposed by Gaidzinski for calculating nursing requirements. RESULTS The calculation determines the need for three registered nurses and four non-registered nursing for each six hour shift. However, only one registered nurse and four non-registered nurse were available per shift. There was no correlation between triage risk classification and classification of care by the Fugulin Patient Classification System. CONCLUSION A deficit in professional staff was identified in the emergency room. The specificity of this unit made it difficult to measure. To find the best strategy to do so, further studies should be performed.
Resumo:
ABSTRACT Objective To explore potential associations between nursing workload and professional satisfaction among nursing personnel (NP) in Greek Coronary Care Units (CCUs). Method A cross-sectional study was performed involving 66 members of the NP employed in 6 randomly selected Greek CCUs. Job satisfaction was assessed by the IWS and nursing workload by NAS, CNIS and TISS-28. Results The response rate was 77.6%. The reliability of the IWS was α=0.78 and the mean score 10.7 (±2.1, scale range: 0.5-39.7). The most highly valued component of satisfaction was “Pay”, followed by “Task requirements”, “Interaction”, “Professional status”, “Organizational policies” and “Autonomy”. NAS, CNIS and TISS-28 were negatively correlated (p≤0.04) with the following work components: “Autonomy”, “Professional status”, “Interaction” and “Task requirements”. Night shift work independently predicted the score of IWS. Conclusion The findings show low levels of job satisfaction, which are related with nursing workload and influenced by rotating shifts.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) act as metabolic sensors and central regulators of fat and glucose homeostasis. Furthermore, PPARγ has been implicated as major catabolic regulator of bone mass in mice and humans. However, a potential involvement of other PPAR subtypes in the regulation of bone homeostasis has remained elusive. Here we report a previously unrecognized role of PPARβ/δ as a key regulator of bone turnover and the crosstalk between osteoblasts and osteoclasts. In contrast to activation of PPARγ, activation of PPARβ/δ amplified Wnt-dependent and β-catenin-dependent signaling and gene expression in osteoblasts, resulting in increased expression of osteoprotegerin (OPG) and attenuation of osteoblast-mediated osteoclastogenesis. Accordingly, PPARβ/δ-deficient mice had lower Wnt signaling activity, lower serum concentrations of OPG, higher numbers of osteoclasts and osteopenia. Pharmacological activation of PPARβ/δ in a mouse model of postmenopausal osteoporosis led to normalization of the altered ratio of tumor necrosis factor superfamily, member 11 (RANKL, also called TNFSF11) to OPG, a rebalancing of bone turnover and the restoration of normal bone density. Our findings identify PPARβ/δ as a promising target for an alternative approach in the treatment of osteoporosis and related diseases.
Resumo:
Mutations in kerato-epithelin are responsible for a group of hereditary cornea-specific deposition diseases, 5q31-linked corneal dystrophies. These conditions are characterized by progressive accumulation of protein deposits of different ultrastructure. Herein, we studied the corneas with mutations at kerato-epithelin residue Arg-124 resulting in amyloid (R124C), non-amyloid (R124L), and a mixed pattern of deposition (R124H). We found that aggregated kerato-epithelin comprised all types of pathological deposits. Each mutation was associated with characteristic changes of protein turnover in corneal tissue. Amyloidogenesis in R124C corneas was accompanied by the accumulation of N-terminal kerato-epithelin fragments, whereby species of 44 kDa were the major constituents of amyloid fibrils. R124H corneas with prevailing non-amyloid inclusions showed accumulation of a new 66-kDa species altogether with the full-size 68-kDa form. Finally, in R124L cornea with non amyloid deposits, we found only the accumulation of the 68-kDa form. Two-dimensional gels revealed mutation-specific changes in the processing of the full-size protein in all affected corneas. It appears that substitutions at the same residue (Arg-124) result in cornea-specific deposition of kerato-epithelin via distinct aggregation pathways each involving altered turnover of the protein in corneal tissue.
Resumo:
Reductions in firing costs are often advocated as a way of increasingthe dynamism of labour markets in both developed and less developed countries. Evidence from Europe and the U.S. on the impact of firing costs has, however, been mixed. Moreover, legislative changes both in Europe and the U.S. have been limited. This paper, instead, examines the impact of the Colombian Labour Market Reform of 1990, which substantially reduced dismissal costs. I estimate the incidence of a reduction in firing costs on worker turnover by exploiting the temporal change in the Colombian labour legislation as well as the variability in coverage between formal and informal sector workers. Using a grouping estimator to control for common aggregate shocks and selection, I find that the exit hazard rates into and out of unemployment increased after the reform by over 1% for formal workers (covered by the legislation) relative to informal workers (uncovered). The increase of the hazards implies a net decrease in unemployment of a third of a percentage point, which accounts for about one quarter of the fall in unemployment during the period of study.
Resumo:
Summary : With regard to exercise metabolism, lactate was long considered as a dead-end waste product responsible for muscle fatigue and a limiting factor for motor performance. However, a large body of evidence clearly indicates that lactate is an energy efficient metabolite able to link the glycolytic pathway with aerobic metabolism and has endocrine-like actions, rather than to be a dead-end waste product. Lactate metabolism is also known to be quickly upregulated by regular endurance training and is thought to be related to exercise performance. However, to what extent its modulation can increase exercise performance in already endurance-trained subjects is unknown. The general hypothesis of this work was therefore that increasing either lactate metabolic clearance rate or lactate availability could, in turn, increase endurance performance. The first study (Study I) aimed at increasing the lactate clearance rate by means of assumed interaction effects of endurance training and hypoxia on lactate metabolism and endurance performance. Although this study did not demonstrate any interaction of training and hypoxia on both lactate metabolism and endurance performance, a significant deleterious effect of endurance training in hypoxia was shown on glucose homeostasis. The methods used to determine lactate kinetics during exercise exhibited some limitations, and the second study did delineate some of the issues raised (Study 2). The third study (Study 3) investigated the metabolic and performance effects of increasing plasma lactate production and availability during prolonged exercise in the fed state. A nutritional intervention was used for this purpose: part of glucose feedings ingested during the control condition was substituted by fructose. The results of this study showed a significant increase of lactate turnover rate, quantified the metabolic fate of fructose; and demonstrated a significant decrease of lipid oxidation and glycogen breakdown. In contrast, endurance performance appeared to be unmodified by this dietary intervention, being at odds with recent reports. Altogether the results of this thesis suggest that in endurance athletes the relationship between endurance performance and lactate turnover rate remains unclear. Nonetheless, the result of the present study raises questions and opens perspectives on the rationale of using hypoxia as a therapeutic aid for the treatment of insulin resistance. Moreover, the results of the second study open perspectives on the role of lactate as an intermediate metabolite and its modulatory effects on substrate metabolism during exercise. Additionally it is suggested that the simple nutritional intervention used in the third study can be of interest in the investigation on the aforementioned roles of lactate. Résumé : Lorsque le lactate est évoqué en rapport avec l'exercice, il est souvent considéré comme un déchet métabolique responsable de l'acidose métabolique, de la fatigue musculaire ou encore comme un facteur limitant de la performance. Or la littérature montre clairement que le lactate se révèle être plutôt un métabolite utilisé efficacement par de nombreux tissus par les voies oxydatives et, ainsi, il peut être considéré comme un lien entre le métabolisme glycolytique et le métabolisme oxydatif. De plus on lui prête des propriétés endocrines. Il est connu que l'entraînement d'endurance accroît rapidement le métabolisme du lactate, et il est suggéré que la performance d'endurance est liée à son métabolisme. Toutefois la relation entre le taux de renouvellement du lactate et la performance d'endurance est peu claire, et, de même, de quelle manière la modulation de son métabolisme peut influencer cette dernière. Le but de cette thèse était en conséquence d'investiguer de quelle manière et à quel degré l'augmentation du métabolisme du lactate, par l'augmentation de sa clearance et de son turnover, pouvait à son tour améliorer la performance d'endurance de sujets entraînés. L'objectif de la première étude a été d'augmenter la clearance du lactate par le biais d'un entraînement en conditions hypoxiques chez des cyclistes d'endurance. Basé sur la littérature scientifique existante, on a fait l'hypothèse que l'entraînement d'endurance et l'hypoxie exerceraient un effet synergétique sur le métabolisme du lactate et sur la performance, ce qui permettrait de montrer des relations entre performance et métabolisme du lactate. Les résultats de cette étude n'ont montré aucun effet synergique sur la performance ou le métabolisme du lactate. Toutefois, un effet délétère sur le métabolisme du glucose a été démontré. Quelques limitations de la méthode employée pour la mesure du métabolisme du lactate ont été soulevées, et partiellement résolues dans la seconde étude de ce travail, qui avait pour but d'évaluer la sensibilité du modèle pharmacodynamique utilisé pour le calcul du turnover du lactate. La troisième étude a investigué l'effet d'une augmentation de la lactatémie sur le métabolisme des substrats et sur la performance par une intervention nutritionnelle substituant une partie de glucose ingéré pendant l'exercice par du fructose. Les résultats montrent que les composants dynamiques du métabolisme du lactate sont significativement augmentés en présence de fructose, et que les oxydations de graisse et de glycogène sont significativement diminuées. Toutefois aucun effet sur la performance n'a été démontré. Les résultats de ces études montrent que la relation entre le métabolisme du lactate et la performance reste peu claire. Les résultats délétères de la première étude laissent envisager des pistes de travail, étant donné que l'entraînement en hypoxie est considéré comme outil thérapeutique dans le traitement de pathologies liées à la résistance à l'insuline. De plus les résultats de la troisième étude ouvrent des perspectives de travail quant au rôle du lactate comme intermédiaire métabolique durant l'exercice ainsi que sur ses effets directs sur le métabolisme. Ils suggèrent de plus que la manipulation nutritionnelle simple qui a été utilisée se révèle être un outil prometteur dans l'étude des rôles et effets métaboliques que peut revêtir le lactate durant l'exercice.
Resumo:
The introduction of interventional radiology (IR) procedures in the 20th century has demonstrated significant advantages over surgery procedures. As a result, their number is continuously rising in diagnostic, as well as, in therapy field and is connected with progress in highly sophisticated equipment used for these purposes. Nowadays, in the European countries more than 400 fluoroscopically guided IR procedures were identified with a 10-12% increase in the number of IR examinations every year (UNSCEAR, 2010). Depending on the complexity of the different types of the interventions large differences in the radiation doses of the staff are observed.The staff that carries out IR procedures is likely to receive relatively high radiation doses, because IR procedures require the operator to remain close to the patient and close to the primary radiation beam. In spite of the fact that the operator is shielded by protective apron, the hands, eyes and legs remain practically unshielded. For this reason, one of the aims of the ORAMED project was to provide a set of standardized data on extremity doses for the personnel that are involved in IR procedures and to optimize their protection by evaluating the various factors that affect the doses. In the framework of work package 1 of the ORAMED project the impact of protective equipment, tube configuration and access routes were analyzed for the selected IR procedures. The position of maximum dose measured is also investigated. The results of the extremity doses in IR workplaces are presented in this study together with the influence of the above mentioned parameters on the doses.
Resumo:
We have recently shown that at isotopic steady state (13)C NMR can provide a direct measurement of glycogen concentration changes, but that the turnover of glycogen was not accessible with this protocol. The aim of the present study was to design, implement and apply a novel dual-tracer infusion protocol to simultaneously measure glycogen concentration and turnover. After reaching isotopic steady state for glycogen C1 using [1-(13)C] glucose administration, [1,6-(13)C(2)] glucose was infused such that isotopic steady state was maintained at the C1 position, but the C6 position reflected (13)C label incorporation. To overcome the large chemical shift displacement error between the C1 and C6 resonances of glycogen, we implemented 2D gradient based localization using the Fourier series window approach, in conjunction with time-domain analysis of the resulting FIDs using jMRUI. The glycogen concentration of 5.1 +/- 1.6 mM measured from the C1 position was in excellent agreement with concomitant biochemical determinations. Glycogen turnover measured from the rate of label incorporation into the C6 position of glycogen in the alpha-chloralose anesthetized rat was 0.7 micromol/g/h.
Resumo:
Rats bearing the Yoshida AH-130 ascites hepatoma showed enhanced fractional rates of protein degradation in gastrocnemius muscle, heart, and liver, while fractional synthesis rates were similar to those in non-tumor bearing rats. This hypercatabolic pattern was associated with marked perturbations of the hormonal homeostasis and presence of tumor necrosis factor in the circulation. The daily administration of a goat anti-murine TNF IgG to tumor-bearing rats decreased protein degradation rates in skeletal muscle, heart, and liver as compared with tumor-bearing rats receiving a nonimmune goat IgG. The anti-TNF treatment was also effective in attenuating early perturbations in insulin and corticosterone homeostasis. Although these results suggest that tumor necrosis factor plays a significant role in mediating the changes in protein turnover and hormone levels elicited by tumor growth, the inability of such treatment to prevent a reduction in body weight implies that other mediators or tumor-related events were also involved.
Resumo:
To explore the changes in resting energy expenditure (REE) and whole body protein turnover induced by malaria, 23 children aged 6 to 14 y (23.9 +/- 1.0 kg, 1.3 +/- 0.02 m) were studied on three separate days after treatment (d 1, d 2, and 15 d later). REE was assessed by indirect calorimetry (hood), whereas whole body protein turnover was estimated using a single dose of [15N]glycine administered p.o. by measuring the isotopic enrichment of [15N]ammonia in urine over 12 h. Within the first 3.5 h after treatment, the body temperature dropped from 39.8 +/- 0.1 to 37.8 +/- 0.1 degrees C (p < 0.0001), and REE followed the same pattern, decreasing rapidly from 223 +/- 6 to 187 +/- 4 kJ/kg/d (p < 0.0001). Whole body protein synthesis and breakdown were significantly higher during the 1st day (5.65 +/- 0.38 and 6.21 +/- 0.43 g/kg/d, respectively) than at d 15 (2.95 +/- 0.17 and 2.77 +/- 0.2 g/kg/d). It is concluded that Gambian children suffering from an acute episode of malaria have an increased REE averaging 37% of the control value (d 15) and that this was associated with a substantial increase (by a factor of 2) in whole body protein turnover. A rapid normalization of the hypermetabolism and protein hypercatabolism states after treatment was observed.
Resumo:
Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps. Methods Using the quadratic diversity measure based on six functional traits: specific leaf area (SLA), leaf dry matter content (LDMC), plant height (H), leaf carbon content (C), leaf nitrogen content (N), and leaf carbon to nitrogen content (C/N) alongside a species-resolved phylogenetic tree, we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps. Important findings Our study highlights two main points. First, climate and land use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land use factors in plant functional and phylogenetic community turnover, and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.
Protein turnover and thermogenesis in response to high-protein and high-carbohydrate feeding in men.
Resumo:
The rates of energy expenditure and wholebody protein turnover were determined during a 9-h period in a group of seven men while they received hourly isocaloric meals of high-protein (HP) or high-carbohydrate (HC) content. Their responses to feeding were compared with those to a short period of fasting (15-24 h). The 9-h thermic response to the repeated feeding of HP meals was found to be greater than that to the HC meals (9.6 +/- 0.6% vs 5.7 +/- 0.4% of the energy intake, respectively, means +/- SEM, p less than 0.01). The rate of whole-body nitrogen turnover over 9 h increased from 17.6 +/- 2.2 g on the fasting day to 27.4 +/- 1.4 g during HC feeding (NS) and there was a further increase to 58.2 +/- 5.3 g resulting from HP feeding (p less than 0.001). By using theoretical estimates (based upon ATP requirements) of the metabolic cost of protein synthesis, 36 +/- 9% of the thermic response to HC feeding and 68 +/- 3% of the response to HP feeding could be accounted for by the increases in protein synthesis compared with the fasting state.
Resumo:
Malondialdehyde (MDA) is a small reactive molecule which occurs ubiqui¬tous among eukaryotes. Interest in this molecule stems from the fact that it can be highly reactive. In green tissues of plants it is apparently formed pre¬dominantly by reactive oxygen species (ROS)-mediated non-enzymatic oxi¬dation (nLPO) of triunsaturated fatty acids (TFAs). MDA which is formed by nLPO is widely used as a disease marker and is regarded to be a cel-lular toxin. Surprisingly, sites of ROS production like mitochondria and chloroplasts possess membranes which are enriched in nLPO-prone polyun¬saturated fatty acids (PUFAs). In this work we showed that chloroplasts are the major site of MDA production in leaves of adult Arabidopsis thaliana plants, whereas analyses in seedlings revealed accumulation in meristematic tissues like the root tip, lateral roots and the apical meristem region. Char-acterizing the MDA pools in more detail, we could show that MDA in plants was predominantly present in a free, non-reactive enolate form. This might explain why it is tolerated in sites where its protonated form could poten¬tially damage the genome and proteome. Analyzing the biological fate of MDA in leaves using labeled MDA-isotopes. we were able to show that MDA is metabolized and used to assemble lipids. The major end-point metabolite was identified as 18:3-16:3-monqgalactosyldiacylglycerol (MGDG), which is the most abundant lipid in chloroplasts. We hypothesize that PUFAs in sites of ROS production, like at PS II in chloroplasts, might act as buffers pre¬venting damage of proteins, thereby generating molecules such as MDA. The MDA produced in this way appears predominantly in a non-reactive enolate form in the cell until it fulfills a biological function or until it is metabo¬lized in order to assemble polyunsaturated MGDGs. Additionally, nLPO has been reported to increase in pathogenesis and we challenged seedlings and adult plants with necrotrophic fungi. Monitoring MDA during the in¬fections, we found MDA pools in seedlings were highly inducible although they were tightly controlled in the leaves of adult plants. - Malondialdehyde (MDA) est une petite molecule réactive présente de manière ubiquitaire dans les eucaryotes. L'intérêt de cette molécule vient du fait que celle-ci pourrait être très réactive. Dans les tissus verts des plantes, la majorité du MDA est apparement formée par l'oxydation non-enzymatique (nLPO) des acides gras polyinsaturés (PUFAs) transmis par des espèces ac¬tives d'oxygène (ROS). Le MDA formé par nLPO est souvent utilisé comme marqueur de maladies et il est considéré comme une toxine cellulaire. Etonnament, les sites de production comme les mitochondries et les chloro- plastes sont riches en PUFAs qui sont sensibles à la nLPO. Dans cette thèse nous montrons que les chloroplastes répresentent le site de production de MDA dans les feuilles adultes d'Arabidopsis thaliana. Les analyses de MDA dans les plantules ont révélé que le MDA s'accumule dans les tissus meris- tematiques comme celles de la pointe de la racine, des racines latéralles et du meristème apical. Par la caractérisation du MDA présent nous avons pu montrer que la majorité du MDA était présent sous la forme d'un énolate non-réactif. Ceci pourrait expliquer pourquoi le MDA est toléré dans les sites où il pourrait casser le genome ou le protéome s'il est présent sous sa forme protonée. Les analyses du devenir du MDA dans les feuilles par des isotopes du MDA ont montré que celui-ci est metabolisé et utilisé pour assembler des lipides. Le lipide majoritairement métabolisé a été identifié comme étant le 18:3-16:3-monogalactosyldiacylglycerole (MGDG); le lipide le plus abondant dans les chloroplastes. Nous supposons que la présence des PUFAs dans les sites de production du ROS, tout comme le PS II dans les chloroplastes, pourrait jouer un rôle de tampon pour prevenir les protéines de différentes dégradations et ainsi générer des molécules telle que le MDA. La majorité du MDA produit par cette réaction est présente dans la cellule sous la forme d'énolate non-réactif, jusqu'au moment de son utilisation ou lorsqu'il serra metabolisé pour produire des MGDGs polyinsaturés. De plus, il a été décrit que nLPO pourait augmenter dans la pathogenèse, et nous avons testé des plantes adultes et des plantules en présence de champignons nécrotrophiques. L'observation du MDA pendant les infections a montré que les concentrations en MDA sont fortement induites dans les plantules mais contrôlées dans les plantes adultes.
Resumo:
BACKGROUND: The emergency department has been identified as an area within the health care sector with the highest reports of violence. The best way to control violence is to prevent it before it becomes an issue. Ideally, to prevent violent episodes we should eliminate all triggers of frustration and violence. Our study aims to assess the impact of a quality improvement multi-faceted program aiming at preventing incivility and violence against healthcare professionals working at the ophthalmological emergency department of a teaching hospital. METHODS/DESIGN: This study is a single-center prospective, controlled time-series study with an alternate-month design. The prevention program is based on the successive implementation of five complementary interventions: a) an organizational approach with a standardized triage algorithm and patient waiting number screen, b) an environmental approach with clear signage of the premises, c) an educational approach with informational videos for patients and accompanying persons in waiting rooms, d) a human approach with a mediator in waiting rooms and e) a security approach with surveillance cameras linked to the hospital security. The primary outcome is the rate of incivility or violence by patients, or those accompanying them against healthcare staff. All patients admitted to the ophthalmological emergency department, and those accompanying them, will be enrolled. In all, 45,260 patients will be included in over a 24-month period. The unit analysis will be the patient admitted to the emergency department. Data analysis will be blinded to allocation, but due to the nature of the intervention, physicians and patients will not be blinded. DISCUSSION: The strengths of this study include the active solicitation of event reporting, that this is a prospective study and that the study enables assessment of each of the interventions that make up the program. The challenge lies in identifying effective interventions, adapting them to the context of care in an emergency department, and thoroughly assessing their efficacy with a high level of proof.The study has been registered as a cRCT at clinicaltrials.gov (identifier: NCT02015884).
Resumo:
The major processes discussed below are protein turnover (degradation and synthesis), degradation into urea, or conversion into glucose (gluconeogenesis, Figure 1). Daily protein turnover is a dynamic process characterized by a double flux of amino acids: the amino acids released by endogenous (body) protein breakdown can be reutilized and reconverted to protein synthesis, with very little loss. Daily rates of protein turnover in humans (300 to 400 g per day) are largely in excess of the level of protein intake (50 to 80 g per day). A fast growing rate, as in premature babies or in children recovering from malnutrition, leads to a high protein turnover rate and a high protein and energy requirement. Protein metabolism (synthesis and breakdown) is an energy-requiring process, dependent upon endogenous ATP supply. The contribution made by whole-body protein turnover to the resting metabolic rate is important: it represents about 20 % in adults and more in growing children. Metabolism of proteins cannot be disconnected from that of energy since energy balance influences net protein utilization, and since protein intake has an important effect on postprandial thermogenesis - more important than that of fats or carbohydrates. The metabolic need for amino acids is essentially to maintain stores of endogenous tissue proteins within an appropriate range, allowing protein homeostasis to be maintained. Thanks to a dynamic, free amino acid pool, this demand for amino acids can be continuously supplied. The size of the free amino acid pool remains limited and is regulated within narrow limits. The supply of amino acids to cover physiological needs can be derived from 3 sources: 1. Exogenous proteins that release amino acids after digestion and absorption 2. Tissue protein breakdown during protein turnover 3. De novo synthesis, including amino acids (as well as ammonia) derived from the process of urea salvage, following hydrolysis and microflora metabolism in the hind gut. When protein intake surpasses the physiological needs of amino acids, the excess amino acids are disposed of by three major processes: 1. Increased oxidation, with terminal end products such as CO₂ and ammonia 2. Enhanced ureagenesis i. e. synthesis of urea linked to protein oxidation eliminates the nitrogen radical 3. Gluconeogenesis, i. e. de novo synthesis of glucose. Most of the amino groups of the excess amino acids are converted into urea through the urea cycle, whereas their carbon skeletons are transformed into other intermediates, mostly glucose. This is one of the mechanisms, essential for life, developed by the body to maintain blood glucose within a narrow range, (i. e. glucose homeostasis). It includes the process of gluconeogenesis, i. e. de novo synthesis of glucose from non-glycogenic precursors; in particular certain specific amino acids (for example, alanine), as well as glycerol (derived from fat breakdown) and lactate (derived from muscles). The gluconeogenetic pathway progressively takes over when the supply of glucose from exogenous or endogenous sources (glycogenolysis) becomes insufficient. This process becomes vital during periods of metabolic stress, such as starvation.